Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность электролитов, определение

    Полярографическую волну, подчиняющуюся уравнению (5.15), называют обратимой она имеет характерную крутизну (скорость подъема). В полулогарифмических координатах наклон прямой Е — 1я[(г д. пр — /)//] равен ЯТ/пР, что позволяет определить число электронов, принимающих участие в реакции. Наличие обратимости электродного процесса, определяющее возможность получения обратимой полярографической волны, важное обстоятельство для аналитика, поскольку во многих случаях, особенно в различных модификациях полярографического метода, только для обратимого процесса можно получить сигнал тока, имеющий аналитическое значение. Таким образом, важной составляющей подготовки к проведению полярографического определения нового соединения, или известного вещества в новых условиях (другой растворитель, другой фоновый электролит, присутствие поверхностно-активных веществ), является установление наличия обратимости процесса. [c.276]


    Кривые емкости в растворах галогенидов калия одинаковой концентрации приведены на рис. VII.13. Емкость в присутствии специфически адсорбирующихся анионов выше, чем в растворе фторида. Это обусловлено тем, что поверхностно-активные анионы при адсорбции частично Меряют свою сольватную оболочку и их электрические центры ближе подходят к поверхности электрода. После десорбции анионов при отрицательных зарядах поверхности С, -кривые в разных растворах совпадают. При этом совпадают и заряды в 0,1 н. растворах KF, КС1, КВг и KI. Поэтому для определения потенциала нулевого заряда в поверхностно-активном электролите, где минимум на С, -кривой в разбавленном растворе не совпадает с =0, используют метод обратного интегрирования . Для этого из величины заряда в области совпадения С, -кривых, которая рассчитывается по данным емкости в растворе фторида, вычитают площадь под кривой емкости в исследуемом растворе. Потенциал, при котором в результате такого вычитания изменяется знак заряда, равен Eq В исследуемом растворе. [c.179]

    Для сглаживания поверхности и удаления внешнего слоя металла, деформированного при зачистке, в последние годы широко используют электрохимическую полировку электрополировку) электродов. Она представляет собой процесс анодного растворения металла в вязком электролите определенного состава при потенциалах, отвечающих области предельного тока растворения, лежащей при более положительных потенциалах, чем активная (рис. III. 6) или транспассивная (рис. V. 4) области. По еще не вполне ясным причинам (возможно, в связи с затрудненной диффузией необходимых для растворения молекул воды или комплексообразователей [51]) металл растворяется на микровыступах быстрее, чем в микровпадинах поверхности, что и приводит к сглаживанию и появлению блеска. Нередко удается подобрать окислитель, который, восстанавливаясь, может сместить потенциал коррозии металла в указанную область, не оказывая неблагоприятного влияния на анодный процесс. В растворе соответствующего состава металл полируется без наложения внешнего анодного тока (химическая полировка). [c.127]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    Ионы одних металлов, например хрома, в обычных условиях разряжаются на катоде путем проникновения через образующуюся на поверхности электрода пленку. На других металлах пленка образуется лишь при введении в электролит определенных поверхностно-активных или коллоидных веществ. В некоторых случаях добавки поверхностно-активных веществ являются стабилизаторами пленки, образующейся на поверхности электрода в результате прохождения тока, как например, при электроосаждении никеля. [c.234]

    Второй случай неравномерного распределения тока, когда /у>/в и происходит сильное сглаживание шероховатой поверхности, возможен тогда, когда поляризация на выступах т] в будет сильно увеличена по сравнению с поляризацией в углублениях г у. Это происходит при введении в электролит определенных поверхностно-активных веществ. [c.247]

    Уменьшение концентрации ионов осаждаемого металла в электролите, увеличение плотиости тока, понижение температуры, введение поверхностно-активных веществ определенных классов повышает катодную поляризацию и способствует образованию мелкозернистых осадков. [c.121]

    Анодная пассивность выражается в резком торможении процессов растворения металлов по достижении определенного потенциала. При этом металл становится как бы более благородным. Наступление пассивности сопровождается самопроизвольным возрастанием поляризации при одновременном падении проходящего через электролит тока, хотя внешний поляризующий ток не изменяется. Явление анодной пассивности особенно характерно для железа, никеля, а также хрома, титана, молибдена и некоторых других металлов. Пассивированные металлы отличаются иными химическими и электрохимическими свойствами, чем металлы в обычном активном [c.430]

    Так как в электролите, кроме едкого натра, присутствует хлорид натрия, то последний будет оказывать влияние на коэффициент активности /о -. Это влияние может быть точно учтено лишь на основании экспериментальных данных. Приблизительную оценку можно сделать из определения ионной силы католита и правила коэффициент активности данного иона одинаков для всех растворов с одинаковой ионной силой. [c.227]

    Из определения понятия электрохимической активности (9) следует, что в состоянии равновесия (электрохимическая активность ионов в металле сохраняет постоянное значение при постоянстве концентрации ионов в электролите) любые изменения активности твердого металла, в частности вследствие механического воздействия, сопровождаются компенсирующим изменением электродного потенциала по формуле, аналогичной формуле Нернста  [c.95]

    Определение коэффициента распределения между двумя несмешивающимися растворителями. Пусть, например, электролит распределяется между водой и бензолом. Очевидно, что при использовании активностей коэффициент распределения К = = йа (вода)/я2 (бензол) не зависит от концентрации. Для бинарного электролита К = m2f fa2 (бензол). Численное значение К, как обычно, может быть найдено экстраполяцией экспериментальных величин отношения ml (вода)/я2 (бензол) на нулевую концентрацию. При этом необходимо, чтобы в бензольном растворе концентрация электролита была бы достаточно мала, т. е. чтобы й2 (бензол) = Сз (бензол) и /С = (т2) (вода)/С2 (бензол). [c.166]

    Интеграл (VI.56) находим графически методом площадей (рис. 9). Результаты расчета сведены в табл. 9. Большой интерес представляет сравнение этих данных с результатами независимых определений коэффициента активности серной кислоты каким-либо другим экспериментальным методом, например потенциометрическим. Это интересно еще и потому, что при потенциометрическом исследовании серную кислоту рассматривают как электролит. Некоторые результаты потенциометрического исследования растворов серной кислоты в сравнении с данными табл. 9 приводятся в следующем разделе этой главы. [c.114]

    В настоящее время измерение ЭДС различных цепей остается наиболее распространенным и точным методом экспериментального определения коэффициентов активности и других термодинамических свойств растворов электроли- [c.172]

    Определение температур замерзания. Экспериментальные определения, необходимые для этого способа, достаточно просты и сводятся к измерениям температур замерзания растворов в зависимости от концентрации электролита. Заметим, что аналогичным способом часто вычисляют активности электролитов в расплавах по диаграммам плавкости. Задача упрощается в тех случаях, когда отсутствует растворимость в твердом состоянии (или очень мала), как это обычно и бывает ири замерзании водных растворов. Способ расчета был изложен ранее, в гл. IV. Особенности вычислений в случае растворов электролитов сводятся к учету того, что активность при разбавлении стремится к моляльности в степени, равной числу ионов, на которые распадается электролит. [c.219]

    Второй вариант. Определение выхода по току цинка в зависимости от присутствия в электролите примесей и добавок поверхностно активных веществ. [c.103]


    Опыты начинают с измерения равновесного потенциала, в постоянстве которого убеждаются в течение 5—10 мин. При определении равновесного потенциала следует предварительно освободить электролит от растворенного в нем кислорода. В первом варианте исследуют изменение катодной поляризации во времени при плотностях тока на катоде 3, 6 и 9 мА/см потенциал измеряют каждые 10 с в течение 1 мин. Вначале измеряют скорость изменения катодного потенциала в растворе без добавок, а затем в присутствии поверхностно активных веществ. По окончании опытов с одним ме- [c.250]

    Ионселективные электроды — это электрохимические полуэлементы, в которых разность потенциалов на границе раздела фаз электродный материал — электролит зависит от концентрации (точнее, от активности) определяемого иона в растворе. Электродный материал представляет собой твердую или жидкую мембрану, в которую введено вещество, способное отщеплять подлежащие определению ионы. Эти ионы при соприкосновении с водой или с водным раствором электролита способны переходить в него. Иногда, наоборот, ионы нз раствора проникают в мембрану. В результате поверхность мембраны приобретает заряд, противоположный заряду перешедших в раствор ионов, и на границе раздела фаз возникает потенциал, значение которого зависит от активности данных ионов в растворе. Если мембрана разделяет два раствора с различной активностью, например однозарядных ионов, тогда потенциал определяется уравнением Нернста  [c.467]

    Из схематической анодной кривой, представленной на рис. 1.2, видно, что испытания нужно вести таким образом, чтобы потенциал металла находился в области активного растворения (АБ) и по возможности был смещен в сторону положительных значений от стационарного, но не выходил за пределы потенциала пассивации (фп). Это достигается введением в электролит окислителей в определенных концентрациях, а также увеличением подвода кислорода. Сместить потенциал можно и путем анодной поляризации, но поляризация не должна быть большой, а потенциал следует поддерживать на уровне более отрицательном, чем уровень потенциала пассивации. [c.25]

    В растворе хлористого натрия, содержащего кислород, нержавеющая сталь 1Х18Н9Т при анодной поляризации находится на границе активно-пассивного состояния, что выражается в периодических колебаниях потенциала, обусловленных активированием и пассивированием поверхности (рис. 177, кривая /). При введении в электролит определенных количеств сульфат-, хромат-, нитрат-, хлорат- и перхлорат-ионов активация поверх- [c.301]

    Пассивирующие грунтовки чаще всего содержат хроматные пигменты — соли хромовой кислоты хроматы стронция, бария, кальция, цинка, свинца. Хроматы являются самыми распространенными пассиваторами. Даже при незначительных концентрациях хроматов в электролите металлы переходят из активного в пассивное состояние. Это можно проиллюстрировать на примере пассивации стали (рис. 8.1). Даже в агрессивном электролите (0,1 н. N82804) можно полностью подавить коррозионный процесс, если ввести в него хромат определенной концентрации, получившей название защитной. Потенциал стали при этом сильно смещается в сторону положительных значений (на 0,5—0,6 В), что может служить косвенным доказательством сильных пассивирующих свойств хроматов. [c.126]

    Блестящие осадки никеля состоят из округлых кристаллов малых размеров, не имеющих ясно выраженных граней. При электроосаждении в электролитах с блескооб-разователями радиус этих округлостей возрастает, что способствует увеличению блеска. Что же касается причин образования на катоде блестящих электролитических осадков, то образование на катоде блестящих электролитических осадков связано с наличием на поверхности катода пленки, часто коллоидного типа, которая играет определенную роль в подводе разряжающихся ионов к поверхности электрода (так называемый диффузионногидродинамический фактор). Такая пленка образуется лишь при введении в электролит определенных по-верхностно-активных веществ. В некоторых случаях добавки поверхностно-активных веществ являются стабилизаторами пленки, образующейся на поверхности катода при прохождении тока (например, выпадение гидроокиси никеля при электролизе никеля). [c.127]

    Было бы неправильно прин ять аналогичное определение для коэффициента активности электролит ,, т. е. полагать, что . Действи- [c.158]

    Растворенная кислота M I переносится здесь из раствора в раствор " не непосредственно, а в результате иротекання двух противоположно направленных электрохимических ( еакций. Благодаря отсутствию диффузионных потенциалов такие цепи дают возможность точно определить коэффициент активности определенного компонента (в данном случае НС1 в электролите, состав которого можно усложнять). [c.579]

    Метод определения коррозионной активности в условиях конденсации воды (ГОСТ 18597—73). Метод фактически характеризует защитные свойства бензина, т.е. степень уменьшения скорости электрохимической коррозии в системе топливо-металл-электролит. Сущность метода заключается в определении потери массы стальной пластинки (Ст.З), находящейся в бензине в течение 4 ч при насыщении бензина водой и ее конденсации на пластинке. Коррозионная активность бензинов в условиях конденсации воды определяется на приборе Е. С. Чуршукова (рис. 13.14). [c.405]

    Решение этого уравнения оказалось возможным после виедения определенных представлений о закономерностях изменения состава системы, свойств растворителя, активностей и подвижностей ионов при переходе от раствора I к раствору II (Планк и Гендерсон). Наиболее распространены случаи, когда растворы I и II представляют собой либо один и тот же электролит с активностями ai и (например, [c.45]

    Электрохимическое производство химических продуктов составляет большую отрасль современной химической промышленности, Среди крупнотоннажных электрохимических производств на n piiOM месте стоит электролитическое получение хлора и щелочей, которое основано на электролизе водного раствора поваренной соли. Мировое электролитическое производство хлора составляет —30 млн, т в год. Хлорный электролиз принадлежит к числу наиболее старых электрохимических производств, начало ему было положено еще в 80-х годах прошлого века. В настоящее время используют два метода электролиза с ртутным катодом и с твердым катодом (диафрагменный метод). На ртутном катоде разряжаются ионы Na+ и образуется амальгама, которую выводят из электролизера, разлагают водой, получая водород и щелочь, и снова возвращают в электролизер. На твердом катоде, в качестве которого используют определенные марки стали с относительно низким водородным перенапряжением, выделяется водород, а электролит подщелачивается. Диафрагма служит для предотвращения соприкосновения выделяющегося на аноде хлора со щелочным раствором. На аноде обоих типов электролизеров выделяется хлор, а также возможен разряд ионов гидроксила и молекул воды с образованием кислорода. Материал анода должен обладать высокой химической стойкостью, В качестве анодов используют магнетит, диоксид марганца, уголь, графит, В последнее время разработаны новые малоизнашиваемые аноды из титана, покрытого активной массой на основе смеси оксидов рутения и титана. Эти электроды называются оксидными рутениевотитановыми анодами — ОРТА, [c.271]

    Такими условиями являются применение слабощелочных электролитов (pH = 9,5—10,5) определенного состава, а также введение в электролит ингибиторов коррозии. Хорошие результаты получаются, например, в электролите, содержащем 250 г/л MgBг2 и 0,2 г/л Ь12Сг04. В сильно щелочных растворах Mg пассивируется настолько сильно, что перестает работать как активный электрод. Потенциал электрода из сплава Mg -l%А14-0,5в растворе MgBr2 на 0,2—0,4 в отрицательнее потенциала цинкового электрода. Коэффициент использования Mg в элементах в лучшем случае не превышает 66,6% [21], а обычно значительно меньше, но и при этом весовой расход магния на 1 а-ч ниже расхода цинка. Магниевые электроды в солевых растворах проявляют отрицательный дифференц-эффект, т. е. при увеличении плотности тока разряда они активируются и начинают более сильно корродировать с выделением водорода. Потенциал их при этом становится более отрицательным. [c.556]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    На рис. 1.15 дана анодная кривая АВСО, определенная потенциостати-чески для системы металл— среда, которая подвергается изменению в точке В. По мере того как потенциал становится более положительным, плотность тока возрастает в активной области АВ и достигает критической величины (критической плотности тока г кр), при которой скорость коррозии внезапно падает благодаря образованию защитной окисной пленки на поверхности металла. В этом случае говорят, что металл пассивен и скорость его коррозии, которая зависит от окисной пленки, значительно меньше, чем в активных условиях. Пассивное состояние определяется также окислительно-восстановительным потенциалом раствора и кинетикой катодной реакции. Линия ПК описывает восстановление ионов Н+ на катоде, когда металл активно корродирует в кислоте. Скорость коррозии и коррозионный потенциал определяются пересечением этой линии и анодной кривой в точке 7. В электролите с высоким окислительно-восстановительным потенциалом, который получают насыщением восстановительной кислоты кислородом или добавлением таких окис- [c.39]


Смотреть страницы где упоминается термин Активность электролитов, определение: [c.156]    [c.61]    [c.190]    [c.223]    [c.238]    [c.223]    [c.227]    [c.345]    [c.223]    [c.219]    [c.377]    [c.393]    [c.192]    [c.100]    [c.67]    [c.498]   
Физическая химия Том 2 (1936) -- [ c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Активность электролитов

Определение ХПК активного ила

Электролиты определение



© 2025 chem21.info Реклама на сайте