Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия ионов электрическая

    Рассмотрим теперь задачу о нахождении критерия коагуляции лиофобных золей, содержащих сферические частицы одинакового размера. Воспользуемся для этого выражением для энергии ионно-электрического< отталкивания двух бесконечных пластин [3]  [c.156]

    Гальванический элемент — простое устройство для превращения химической энергии в электрическую в небольшом удобном контейнере. При изготовлении коммерческих элементов химики используют самые разнообразные комбинации металлов и ионов. В простейшем сухом элементе (рис. Vni.lO) — называемом часто батарейкой — в качестве анода используется цинк, а в качестве катода — диоксид марганца (МпОг). Раствор в большинстве сухих элементов содержит ионы аммония и хлорид цинка. В щелочных батарейках раствор содержит гидроксид калия (КОН). [c.529]


    Этот вращающийся на орбите ион может поглощать энергию переменного электрического поля E t) частоты (Oi, если ui = са . [c.329]

    Электрохимия — раздел физической химии, изучающий переход химической энергии в электрическую и обратно, свойства растворов электролитов и движение ионов под действием электрического поля. Переход химической энергии в электрическую осуществляется в электрохимических (гальванических) элементах и аккумуляторах. В процессе электролиза электрическая энергия переходит в химическую энергию. Процессы пр< вращения электрической энергии в химическую и обратно происходят на границе электрод (электронный проводник) — раствор электролита (ионный проводник) и заключаются в передаче электрона с электрода на ион в растворе или обратно. [c.244]

    Ионизация и фрагментация органических соединений в сильном электрическом поле (полевая ионизация) представляет собой комбинацию трех процессов 1) распад молекулярных ионов, получивших избыточную энергию от электрического поля по закономерностям, сходным с фрагментацией при электронном ударе 2) рас- [c.134]

    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    Если свободная энергия ионов металла в металле больше, чем в растворе, например цинка, находящегося в растворе сернокислого цинка, то ионы металла перейдут из металла в раствор и образуют положительную обкладку двойного электрического слоя (рис. 3, а). Отрицательная обкладка такого двойного электрического слоя образуется оставшимися вблизи поверхности металла свободными электронами. Силовое поле двойного слоя, образующегося на границе раздела фаз, препятствует такому переходу, оно отталкивает ионы металла в направлении к металлу. Таким образом, когда ионы металла переходят из металла в раствор, они должны совершать работу против сил поля, создаваемого двойным электрическим слоем. Эта работа, энергия для которой черпается из разности свободных энергий, тем больше, чем больше разность потенциалов двойного слоя. Переход ионов может продолжаться до тех пор, пока разность потенциалов в двойном слое не достигнет той величины, которая соответствует разности между свободными энергиями ионов металла в металле и в растворе. Затем устанавливается равновесие. Этому состоянию соответствует равновесный электродный потенциал. [c.32]


    Переход ионов из металла в раствор и наоборот будет продолжаться до тех пор, пока разность потенциалов в двойном электрическом слое (А ) не достигнет значения, которое соответствует разности между свободными энергиями ионов металла в металле и в растворе. Этому состоянию соответствует равновесный электродный потенциал. [c.31]

    Если свободная энергия ионов металла в растворе больше, чем в металле, например при контакте меди с раствором сернокислой меди, то ионы металла выйдут из раствора, осядут на металле и образуют положительную обкладку двойного электрического слоя (см. рис. 3.1, [c.31]

    Элемент Даниэля представляет собой сосуд, разделенный пористой перегородкой на два отсека (рис. V. ). В одном из них находится раствор сульфата меди с погруженной в него медной пластиной, которая является положительным электродом элемента. В другом находится раствор сульфата цинка, в который погружена цинковая-пластина, являющаяся отрицательным электродом. Пористая перегородка препятствует смешению растворов, сохраняя при этом ионную электрическую проводимость в элементе. Даниэль наблюдал, что при работе элемента (прн подключении к нему какого-либо приемника электрической энергии или при замыкании электродов металлическим проводником тока) масса цинковой пластины убывает, а масса медной — увеличивается за счет осаждения на ее поверхности металлической медн. [c.234]

    Числитель показателя экспоненты геф представляет собой потенциальную энергию иона в электрическом поле, [c.65]

    По сравнению с энергией теплового движения частиц электрическая энергия иона очень невелика (2аф<й7 ), поэтому экспоненциальный множитель в уравнениях (490) и (491) можно разложить в ряд [c.331]

    Заряжение металла и раствора сопровождается изменением У и У. Допустим, что Усол> что соответствует рис. 11.1. Отрицательный заряд, который получает металл, приводит к понижению энергии ионов на металле и точка а, а вместе с ней вся кривая ааа" перемещаются вниз (кривая а а1а )- Положительный заряд, который получает раствор, повышает энергию ионов в растворе, поэтому точка Ь и вся кривая Ь ЬЬ" перемещаются вверх (кривая Электростатическое взаимодействие между металлом и ионами раствора препятствует беспредельному переходу ионов в одном направлении. В итоге, когда иа Оь, в системе металл — раствор устанавливается подвижное равновесие. На границе двух фаз формируется двойной электрический слой, которому соответствует определенное значение потенциала. Как было указано выше, условием равновесия в системах с заряженными частицами является равенство электрохимических потенциалов каждого сорта частиц (г) в контактирующих фазах I и II. Так как а, = ц, + 2,7 ф, а при равно- [c.166]

    В случае адсорбции заряженных частиц необходимо учитывать изменение энергии ионов в электрическом поле. Для катионов (из расчета на 1 моль) она равна 2+ ф, а для анионов —Таким образом, полные потенциалы ионов равны [c.93]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]


    Первый член уравнения (П.28) характеризует взаимодействие зарядов двух ионов, сумма второго и третьего — соответственно взаимодействие ионов с наведенными электрическими моментами диполей и этих диполей друг с другом (сюда включена также энергия образования электрических моментов диполей) четвертый член учитывает взаимодействие ионов за счет сил Ван-дер-Ваальса, пятый— энергию отталкивания. [c.76]

    Величина Q3 соответствует потенциальной энергии иона, находящегося на расстоянии го от поверхности она обусловлена силой электрического притяжения — ион как бы притягивается к равному и противоположному по знаку заряду, индуцированному под поверхностью на расстоянии го. Измеренные теплоты хемосорбции согласуются с расчетными значениями адсорбции металлов на вольфраме Q = Qi + Q2 + Qa <ак видно из табл. УП1.2. [c.118]

    Поскольку плазма не находится в равновесии, ее характеристики отвечают лишь определенным стационарным процессам. Непрерывно происходит ионизация и нейтрализация зарядов, выделение энергии внутри плазмы и охлаждение вследствие взаимодействия с окружающей средой. При этом наиболее трудно происходит обмен энергией между ионами и электронами, что обусловлено большим различием в их массах. Поэтому отсутствует термическое равновесие между ионами и электронами, а также и нейтральными частицами (молекулами). Энергию от электрических источников (например, дуг) непосредственно получают электроны. Вследствие этого 7 а>7 и>7 м, где Тэ, Ти, 7 м — температуры электронов ионов и молекул (или атомов). В газоразрядных трубках Гэ имеет порядок 10 С, а Та и Ты лишь (1—2)-10 °С. В дуговом разряде, где плотность газа выше и число столкновений больше, величины Та, Тя и Та сближаются. При этом Т и Тм достигают около 6000° С. [c.357]

    Энергия электрона достаточна для ионизации атома.< Атом превращается в положительный ион, а электрон теряет энергию, обращаясь в медленный электрон, как и электрон, выбитый из атома и еще не успевший набрать энергию в электрическом поле. [c.46]

    ИОНЫ, электрически заряж. частицы, возникающие при потере или приобретении электронов атомами или группами химически связанных атомов. Отрыв электрона от частицы требует затраты энергии, наз. потенциалом ионизации присоединение электрона сопровождается выделением энергии. Положительно заряж. ионы наз. катионами, отрицательно заряженные — анионами. Заряд И. всегда кратен заряду электрона. В виде самостоят. частиц И. могут существовать во всех известных агрегатных состояниях в-ва. Св-ва И. резко отличаются от св-в нейтр. частиц аналогичного хим. состава и определяются знаком и величиной заряда, размерами и строением внеш. электронной оболочки. Для нек-рых св-в И., напр. цвета, определяющее эначение имеет незавершенность электронной оболочки [c.227]

    Под действием приложенного напряжения молекулы воздуха расщепляются на ионы и электроны, заряженные положительно и отрицательно. Эти ионы под влиянием сил электрического поля начинают двигаться к противоположно заряженным электродам. Скорость движения, а следовательно, и кинетическая энергия ионов и электронов возрастает с увеличением напряжения электрического поля. [c.189]

    В условиях М.-с. часть возбужденных ионов распадается после выхода из ионного источника. Такие ионы наз. метастабильными. В масс-спектрах они характеризуются уширенными пиками при нецелочисленных значениях ш/г. Один из методов изучения таких ионов-спектроскопия масс и кинетич. энергий ионов. Изучение распада метастабильных ионов проводят на приборах, у к-рых магн. анализатор предшествует электрическому. Магн. анализатор настраивают таким образом, чтобы он пропустил метастабильный [c.662]

    Разница между энергиями идеального раствора электролита и раствора сильного электролита определяется измепепием электрической энергии ионов за счет их взаимодействия с другими ионами (ионной атмосферой). Ионная атмосфера уменьшает энергию центральных ионов на величину энергии ионной атмосферы Г-Га, которая может быть вычислена как энергия заряжения сферы, имеющей потенциал [c.16]

    Так как величина х входит в уравнения для расчета нотенциала и энергии ионной атмосферы, эти характеристики растворов сильных электролитов и, следовательно, коэффициенты активности растворов и их электрические проводимости тоже зависят от ионной силы. [c.17]

Рис.4. Зависимость электрического сопротивления углеродной пленки от энергии ионного облучения I Рис.4. <a href="/info/134947">Зависимость электрического</a> сопротивления углеродной пленки от <a href="/info/9111">энергии ионного</a> облучения I
    Электрически нейтральные молекулы с несимметричным распределением зарядов обладают постоянным дипольным моментом [1. Если величину двух равных по величине и противоположных по знаку зарядов этого молекулярного диполя обозначить символом q, а расстояние между зарядами I, то дипольный момент будет равен i = ql. Диполь, находящийся в электрическом поле иона, ориентируется таким образом, что его часть, несущая заряд, противоположный по знаку заряду иона, будет направлена к этому иону, а другая часть —в обратную сторону. Потенциальная энергия ион-дипольного взаимодействия определяется выражением  [c.31]

    Введение электростатического поля перед магнитным (двойная фокусировка) позволяет получать настолько высокое разрешение, что массы частиц могут быть найдены с точностью до трех или четырех десятичных знаков [1, 3—7, 10в, Юг]. На рис. 4а и 46 даны примеры схем таких приборов с двойной фокусировкой. В электрическом поле на положительный ион действует сила в направлении поля таким образом, путь иоиа, движущегося поперек поля, искривлен. В радиальном электрическом поле (всегда перпендикулярном к направлению полета ионов) радиус кривизны пути иона зависит от энергии иона и напряженности электрического поля. Электрическое поле является анализатором энергии, а не анализатором масс и предназначается для ограничения разброса энергии ионного пучка перед тем, как он войдет в магнитное поле. [c.28]

    Мольная электрическая энергия ионов равна [c.150]

    Другая методика, позволяющая использовать элементарный углерод вместо его соединений, основана на сообщении ускорения ионам Углерода до высоких энергий в электрическом поле [36]. Первоначально прн электрическом разряде в условиях низкого давления газа получают положительные ионы углерода, которые разгоняют и направляют магнитным полем через узкую щель в камеру с очень низким давлением. Сюда ионы углерода поступают с очень высокой скоростью (эквивалентной температуре в десятки тысяч градусов) и Ударяются либо в затравочные алмазные кристаллы, либо в металлические иголки, используемые в качестве регистраторов. До сих пор не подтверждено, что поверхностные слои образуются алмазом. Возможно, осажденный материал—аморфный. Следует заметить, что описан- [c.83]

    В абсорбционной рентгеновской спектроскопии электрон при поглощении рентгеновских квантов не покидает вещества, а переходит в свободные состояния зоны проводимости. Рентгеновская абсорбционная спектроскопия пригодна для изучения газов, расг-воров, твердых тел. Так, спектры поглощения находящихся в растворах ионов, обнаруживают несколько более или менее четких флуктуаций на протяжении нескольких десятков электрон-вольт. В случае комплексных ионов вид этих флуктуаций зависит от типа связи поглощающего атома с его соседями по комплексу. Спектр нона в растворе обусловлен наложением друг на друга серии линий поглощения, ширины которых значительно превосходят ширину внутреннего уровня поглощающего иона. При этом уширение вызвано расщеплением уровней энергии в электрическом поле молекул сольватной оболочки, окружающей ион в растворе, и поэтому зависит не только от поглощающего иона, но и от растворителя. [c.215]

    Сделанный Тейлором вывод о том, что измерение электродвижущих СИЛ элементов с жидкостным соединением и без него не дает никаких сведений относительно свободных энергий ионов, был развит Гуггенгеймом [19]. Гуггенгейм изучал вопрос о разности электрических потенциалов между двумя точками, находящимися в различных средах, и пришел к выводу, ЧТО эта величина является совершенно произвольной и не может быть определена через величины, подлежащие физическому измерению. Гуггенгейм проанализировал различие между этим электростатическим потенциалом и обычным потенциалом, который определяется в электростатике. Электростатика основана на математической теории воображаемой электрической жидкости, равновесие и движение которой полностью определяются электрическим полем. Подобного рода электричество фактически не существует в действительности существуют только электроны и ионы, и эти частицы существенно отличаются от гипотетической электрической жидкости тем, что они все время движутся по отношению друг к другу их равновесие является термодинамическим, а не статическим . Условия термодинамического равновесия этих систем при постоянных температуре и давлении можно найти с помощью уравнения [c.299]

    Учет коррекции уравнения Пуассона — Больцмана. Вычисление распределения потенциала между двумя взаимодействующими плоскими частицами и свободной энергии двойных слоев с учетом объема ионов, зависимости диэлектрической постоянной от напряженности поля и концентрации электролита, поляризации ионов электрическим полем двойного слоя, собственной ионной атмосферы ионов и полостных эффектов предпринято Левиным и Беллом [25]. Численный анализ сложного интеграла авторами еще не завершен. Однако, принимая во внимание влияние различных факторов на распределение потенциала в двойном слое, следует ожидать более сильного уменьшения электростатических сил отталкивания с расстоянием по сравнению с закономерностью, предсказываемой уравнением Пуассона — Больцмана. Вместе с тем, ниже будет показано, что в св зи с противоположным действием ряда факторов, по крайней мере, для симметричного электролита, содержащего одновалентные ионы, коррекция уравнения Пуассона — Больцмана не вносит существенных изменений в теорию устойчивости лио-фобных коллоидов. [c.29]

    Рассмотрим работу внесения заряженной частицы г из вакуума внутрь оставшейся незаряженно ( сферы, лишенной также пространственно разделенных зарядов на поверхности (рис. У1.1,в). При умножении на постоянную Авогадро эта работа дает, т. е. химический потенциал частицы I в фазе а. Если,, например, фаза а представляет собой бесконечно разбавленный раствор, а частица / является ионом, то величина х/ обусловлена энергией ион-дипольного взаимодействия и равна химической энергии сольватации. Химическая энергия взаимодействия заряженной частицы с фазой также обусловлена электрическими по своей природе силами, но только более сложными, нежели кулоновское взаимодействие заряда с заданным полем. [c.113]

    Энергию в основном от электрических источников получают электроны. Из-за большого различия их масс и масс ионов они плохо передают энергию ионам. В результате члекгронов > [c.537]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    В связи с большой энергией ионных кристаллических решеток находятся их высокие температуры плавления (например, у Na l / 800° С) и очень высокие температуры кипения — порядка 2000 С. Сухие ионные кристаллические вещества неэлектропроводны, потому что в них практически все электроны локализованы (при низких температурах), т. е. принадлежат только данному иону, а ионная проводимость, хотя и может быть в связи с различными дефектами в решетках (о чем см. ниже), но и она при низких температурах в твердых телах незначительна. Однако растворы и расплавы ионных веществ хорошо проводят электрический ток, что сопровождается химическим разложением вещества (электролизом). [c.129]

    Энергию в основном от электрических источников получают электроны. Из-за большого различия их масс и масс ионов они плохо передают энергию ионам, В результате 7 злектронов Т иопов Т атомов ( э и а) ТаК, В ГаЗО-разрядных трубках Гэ составляет десятки тысяч градусов, а Та и T a — лишь одну — две тысячи. В дуговом разряде из-за большого числа частиц в единице объема столкновения происходят чаще, и Т ближе к и Га. Примерно при той же Тэ величины Г,, и Га достигают 6000 °С. Для плазмы в целом характерна электронейтральность. В то же время в малых объемах электронейтральность ие имеет места. Пространственное расположение зарядов, как п в случае электролитов, определяется ближним порядком. Как и в теории сильных электролитов, в плазме целесообразно ввести понятия радиуса ионной атмосферы (де-баевский радиус). [c.677]

    Осаждение дисперсных твердых и жидких частиц в электрическом поле (электроосаждение) позволяет эффективно очистить газ от очень мелких частиц. Оно основано на ионизации молекул газа электрическим разрядом. Если газ, содержащий свободные заряды (электроны и ионы), поместить между двумя электродами, создающими постоянное электрическое поле, то свободные заряды начнут двигаться по силовым линиям поля. Скорость движения и кинетическая энергия будут определяться напряженностью электрического поля. При повышении разности потенциалов до нескольких десятков киловольт кинетическая энергия ионов и электронов становится достаточной для того, чтобы они сталкивались с нейтральными газовыми молекулами, расщепляли их на ионы и свободные электроны. Вновь образовавшиеся заряды при своем движении также ионизирзтот газ. В результате образование ионов происходит лавинообразно, газ полностью ионизируется. Такую ионизацию называют ударной. При этом возникают условия для электрического разряда. При дальнейшем увеличении напряженности электрического поля возможны электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле один электрод делают в виде проволоки, а другой-в виде охватывающей ее трубы или расположенной рядом пластины (рис. 10-11). [c.226]

    Источник с тлеющим разрядом представляет собой простое двухэлектродное пространство, заполненное благородным газон при давлеш1и 10-1000 Па. Напряжение, равное нескольким сотням вольт, подаваемое на электроды, вызывает пробой газа и образование ионов, электронов и других частиц. Положительные ионы газа, ускоряясь в электрическом поле, бомбардируют катод, который испускает различные вторичные частицы — ионы и атомы анализируемого вещества. При напряжении 500 В и дав-тении 100 Па средний свободный пробег атомов находится в пределах 0,1-0,05 мм, что предполагает частые столкновения входящих в катод и выходящих из него частиц. Это приводит к потере энергии ионами аргона, но оставшейся энергии вполне достаточно для распыления большого количества пробы. Относительное количество распыленных нейтральных атомов и молекул больше, чем ионизированных, и они диффундируют в пространство между анодом и катодом, где в электронно-ионной плазме подвергаются ионизации. Тлеющий разряд не только атомизирует твердую пробу, но и представляет собой средство, с помощью которого ионизируются эти атомы. [c.850]


Смотреть страницы где упоминается термин Энергия ионов электрическая: [c.268]    [c.33]    [c.239]    [c.31]    [c.266]    [c.102]    [c.159]    [c.538]   
Физическая химия Том 2 (1936) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы энергия,

Электрическая энергия

Энергия ионов



© 2024 chem21.info Реклама на сайте