Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионы электрическая энергия

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]


    Выход по энергии характеризует эффективность использования электрической энергии при электролизе, то есть долю ее, непосредственно затрачиваемую на реакции разряда ионов. Из ф-лы 21.13 следует, что выход по энергии падает при уменьшении выхода по току и возрастании разницы между практическим и теоретическим напряжением электролиза. Основные потери энергии при электролизе связаны с тепловыми процессами (нагрев и поддержание высокой температуры электролита). Поэтому, выход по энергии составляет для растворов около 0,6 дол. ед., а для расплавов не более 0,2—0,3 дол. ед. [c.336]

    Электрохимия — раздел физической химии, изучающий переход химической энергии в электрическую и обратно, свойства растворов электролитов и движение ионов под действием электрического поля. Переход химической энергии в электрическую осуществляется в электрохимических (гальванических) элементах и аккумуляторах. В процессе электролиза электрическая энергия переходит в химическую энергию. Процессы пр< вращения электрической энергии в химическую и обратно происходят на границе электрод (электронный проводник) — раствор электролита (ионный проводник) и заключаются в передаче электрона с электрода на ион в растворе или обратно. [c.244]

    Таким образом, удельное сопротивление шлаков на 4—5 порядков выше, чем металлов. Низкая электропроводность шлака объясняется ионным характером этой проводимости, причем с повышением температуры она возрастает в несколько раз, тогда как для металлов с повышением температуры она уменьшается. При наложении электрического поля значения тока смещения в металле по сравнению с током проводимости пренебрежимо малы. Напротив, для хороших диэлектриков наложение переменного электрического поля вызывает ток смещения, тогда как ток проводимости можно не принимать во внимание. Как известно, сила токов проводимости не зависит от частоты тока, тогда как сила токов смещения пропорциональна частоте тока. Указанное обстоятельство приводит к необходимости искать в каждом частном случае решение, удовлетворяющее целям технологического процесса и обеспечивающее наилучшее использование электрической энергии, а такх< е, разумеется, оправданное с экономической точки зрения. [c.221]

    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод - анод, на котором идет реакция окисления. На положительно заряженном электроде - катоде идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) перемещаются к аноду, а положительно заряженные ионы (катионы) движутся к катоду. Количественное соотношение между химическим превращением вещества на электродах и электрической энергией определяется законами Фарадея. [c.35]


    В других масс-спектрометрах разделение по массам производится в радиочастотном электрическом поле. Ионы ускоряются в постоянном поле, а масс-спектр развертывается путем изменения частоты переменного напряжения. Разделение ионов по энергиям может быть также осуществлено пе торможением, а отклонением ионов [8, 9]. [c.7]

    Элемент Даниэля представляет собой сосуд, разделенный пористой перегородкой на два отсека (рис. V. ). В одном из них находится раствор сульфата меди с погруженной в него медной пластиной, которая является положительным электродом элемента. В другом находится раствор сульфата цинка, в который погружена цинковая-пластина, являющаяся отрицательным электродом. Пористая перегородка препятствует смешению растворов, сохраняя при этом ионную электрическую проводимость в элементе. Даниэль наблюдал, что при работе элемента (прн подключении к нему какого-либо приемника электрической энергии или при замыкании электродов металлическим проводником тока) масса цинковой пластины убывает, а масса медной — увеличивается за счет осаждения на ее поверхности металлической медн. [c.234]

    Присутствие в электролите значительных количеств ионов металлов с более электроотрицательным потенциалом, чем цинк, не приводит к загрязнению металла, но несколько снижает электропроводимость электролита. Поэтому для получения цинка заданной чистоты и проведения электролиза с высокими технологическими показателями для всех примесей установлены предельно допустимые концентрации. Удельный расход электрической энергии и уд (кВт-ч/т) определяется составом электролита (кислотностью и концентрацией цинка) и условиями электролиза. Нго рассчитывают по формуле  [c.115]

    По сравнению с энергией теплового движения частиц электрическая энергия иона очень невелика (2аф<й7 ), поэтому экспоненциальный множитель в уравнениях (490) и (491) можно разложить в ряд [c.331]

    Если платиновую пластинку опустить, например, в раствор хлорида железа (III), а вторую такую же — в раствор соли олова (II), разделить растворы электролитов пористой перегородкой (или соединить их с помощью агарового сифона), а затем соединить платиновые пластинки между собой с помощью металлического проводника, в цепи возникает электрический ток. Обнаружить его можно с помощью гальванометра, включенного в цепь этого элемента (рис. 71). Электрическая энергия в данном элементе возникает за счет окисления ионов олова  [c.254]

    В четвертой и пятой главах были рассмотрены электродные процессы в растворах органических соединений, в ходе которых органическое вещество не претерпевает электрохимических превращений, а, адсорбируясь на электроде, влияет на скорость электродного процесса с участием неорганических ионов или молекул. Последующие главы посвящены изложению современных представлений об электродных превращениях самих органических соединений. Такие процессы лежат в основе электросинтеза органических веществ и работы электрохимических генераторов электрической энергии — топливных элементов с органическим горючим. [c.188]

    Для полярных молекул вычисление дополнительного вклада электрической энергии в виде суммы парных взаимодействий зарядов на атомных ионах является наиболее простым и естественным приближением в рамках метода атом-атомных потенциалов. Однако заряды на атомах молекулы зависят от атомного окружения и типа связей в молекуле, в состав которой входит данный атом. Поэтому выбрать значения зарядов для каждого атома данной молекулы затруднительно. Здесь необходимо привлечение квантово-химических расчетов. Эти расчеты должны дать такие значения зарядов на атомах, которые бы воспроизводили определенные экспериментально электрические дипольные и квадрупольные моменты молекул. [c.217]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]


    При бесконечно медленном (обратимом) протекании химической реакции в гальваническом элементе при постоянных температуре и давлении получаемая электрическая энергия наибольшая, и совершаемая при этом электрическая работа максимально полезна и равна убыли изобарного потенциала Л акс=—ДО. Поэтому —АО=пРЕ, где п — количество грамм-эквивалентов вещества (заряд иона) / — число Фарадея (пР — количество электричества, прошедшего через элемент) —электродвижущая сила. [c.218]

    Протекание гальванических процессов в значительной степени зависит от концентрации ионов водорода в растворе, она характеризуется водородным показателем pH (см. работу 19). При низких значениях pH, т. е. когда концентрация ионов водорода велика, возникает опасность, что на катоде вместо восстановления катионов металла (или одновременно с ними) будут восстанавливаться ионы Н+ и выделяться водород. Это нежелательно, так как водород, обладая способностью растворяться во многих металлах, а затем легко выделяться из них, портит покрытия, кроме того, на восстановление водорода тратится электрическая энергия. Но и значения pH [c.180]

    В основе всякого электролиза, следовательно, лежит разделение единого -процесса на два элементарных электрохимических электродных акта, представляющих собой реакции электрона с ионом или нейтральной молекулой. Осуществление такого течения реакции, при котором система и среда обмениваются электрической энергией, мы и будем называть организацией электрохимического. процесса. При этом, если суммарная реакция протекает с выделением электрической энергии, система носит название гальванического элемента если же процесс сопровождается поглощением энергии, систему называют электролитной ванной или электролизером (эти же названия сохраняются и для ячеек, в которых осуществляется соответствующий электрохимический процесс). [c.11]

    Рассмотрим работу топливного элемента (рис. XVI. ) на примере кислородно-водородной системы с щелочным электролитом. В таком элементе происходит превращение химической энергии реакции окисления водорода Нг + /гОг = НгО в электрическую энергию. Топливный элемент состоит из анода /, катода 3 и ионного проводника 2. К аноду подводится топливо (восстановитель), в данном примере водород, к катоду — окислитель, обычно чистый кислород или кислород воздуха. Схема кислородно-водородного топливного элемента может быть записана в виде [c.411]

    Теоретически можно использовать в элементе любую окислительно-восстановительную реакцию. До настоящего времени электрохимики применяли окислительно-восстановительную реакцию ионного типа. Изменения энергии таких систем малы. Сейчас изучают возможность использования в качестве прямого источника электрической энергии окислительно-восстановительные реакции, такие, как реакции горения, которые связаны с гораздо более значительным изменением энергии такие системы получили название топливных элементов , но этот тип элемента еще мало распространен. [c.285]

    Если катализаторами служат ионы (например, Н+, 0Н ), активный комплекс несет электрический заряд. В этом случае энергия активации в электрическом поле изменится на величину электрической энергии 2,- Аф [где 2 —заряд иона (включающий знак) сТ — число Фарадея]. [c.111]

    Здесь I — среднее расстояние между соседними положениями равновесия ионов С — концентрация г-х нопов — электрическая энергия, прилагаемая к иону с зарядом 2,(>о при его перемещении на расстояние /  [c.129]

    Такая чисто ионная концепция приводила, однако, к невозможности истолкования )яда проблем, связанных с возникпове ием э. д. с. в электрохимических системах н с поведением металлов, находящихся в контакте с растворами, содержащими их ионы. Так, в частности, встречаются трудности при выяснении проблемы, где и как в обратимой электрохимической системе генерируется электрическая энергия (проблема Вольты), ошечающая максимальной работе токообразующей реакции. Действительно, общее уравнение для э. д. с. [c.227]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    Уже упоминалось, что коррозионные процессы, как правило, являются электрохимическими. В водной среде они протекают так же, как и в батарейке для карманного фонаря, состоящей из центрального угольного и внешнего цинкового электродов, разделенных электролитом — раствором хлорида аммония (рис. 2.1). Лампочка, соединенная с обоими электродами, горит, пока электрическая энергия генерируется химическими реакциями на электродах. На угольном электроде (положительный полюс) идет реакция химического восстановления, на цинковом (отрицательный полюс) — окисления, при этом металлический цинк превращается в гидратированные ионы цинка Zn -nHaO. В водном растворе ионы притягивают молекулы воды (правда, число последних неопределенно). Этим ионы металла в растворе отличаются от ионов в газе, которые не гидратируются. Обычно при обозначении гидр атированных ионов цинка не учитывают гидратную воду и пишут просто Zn . Чем больше поток электричества в элементе, тем большее количество цинка корродирует. Эта связь описывается количественно законом Фарадея, открытым в начале XIX века  [c.20]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Электролитическая ячейка состоит из двух электродов, погруженных в расплавленную соль или водный раствор, как показано на рис. 19.9. Электрическую энергию получают от аккумуляторной батареи или от другого источника электрического тока. Каков бы ни был источник электрического тока, он играет роль электронного насоса , нагнетающего электроны в один электрод и удаляющего их с другого электрода. При удалении электронов с электрода на нем создается положительный заряд, а при нагнетании электронов на электрод-отрицательный заряд. При электролизе расплавленного Na l, схематически изображенном на рис. 19.9, ионы Na" присоединяют [c.221]

    При зарядке аккумулятора ионы (из PbSOJ на катоде внешнего источника постоянного тока присоединяют по два электрона, восстанавливаясь до металлического свинца, а на аноде — отдают по два электрона, окисляясь до РЬО . Таким образом, при зарядке аккумулятора электрическая энергия превращается в химическую. Протекающие при этом химические процессы выражаются ионными уравнениями на катоде  [c.115]

    Допустим, что расстояние между ионами, связанными с твердой фазой (потенциалопределяющими ионами), и ионами, находящимися в жидкости, равно б. Примем далее, что величина элементарного электрического заряда, умноженная на число единичных электрических зарядов, приход51щихся на единицу поверхности твердой фазы, равна а. Эта величина представляет, очевидно, не что иное, как поверхностную плотность электричества. Ввиду электронейтральности системы поверхностная плотность заряда в жидкости также должна равняться величине а, но с обратным знаком. Это сгущение электрической энергии около межфазной границы эквивалентно заряду конденсатора и соответствует разности потенциалов между его обкладками или соответственно между фазами. Так как 8 очень малая величина, то кривизной межфазной границы можно пренебречь, считая, таким образом, что двойной электрический слой представляет собой плоский конденсатор. Известно, что между величинами 5, а и для плоскопараллельного конденсатора имеется следующая зависимость  [c.199]

    Естественно, что тепловой эффект такой реакции равен нулю. Движущей силой в элементе является разность концентраций. При работе такого элемента медный электрод растворяется в менее концентрированном растворе, а в более концентрированном растворе ионы меди, разряжаясь, внедряются в металл. Это приводит к вьфавниванию концентраций, за счет чего и возникает электрическая энергия. Работа процесса, связанная с выравниванием концентраций (активностей), равна  [c.337]

    Электрохимические элементы. Электрохимические элементы, непосредственно преобразующие энергию химического процесса в электрическую, называются химическими. Они состоят из неодинаковых электродов, и, следовательно, для них характерна различная химическая природа электродных реакций. Элементы, состоящие из одинаковых электродов, называются концентрационными. В этих элементах в электрическую энергию превращается работа процесса выравнивания активностей окисленной или восстановленной форм реагирующего вещества в обоих электродах. Элементы, в которых один и тот же раствор электролита является общим для обоих электродов, называются элементами без переноса. У них отсутствует диффузионный скачок потенциала. В противном случае говорят об элементах с переносом, имея в виду перенос ионов на границе контакта двух различных растворов. [c.291]

    Таким образом, отличительным признаком всякого электрохимического процесса, протекающего на границе фаз электрод — электролит 1В гальванических элементах или электролитных ваннах, является непременное участие электрона. Электрохимия— отрасль химической науки, изучающая наиболее общие закоцы прев ращения веществ в электролитах и на границе фа электрод — электролит при поглощении либо отдаче молекулами, атомами или ионами электронов. Именно электронный переход и реакция между ионами и электронами на границе металл— раствор определяют наблюдаемые при электролизе превращения электрической энергии в новые химические вещества в электролитных ваннах либо глубокие качественные превращения вещества на полюсах элементов с возникновением электрического тока. Нетрудно заметить, что механизм электрохимических процессов существенно отличается от обычной картины химического превращения материи. [c.12]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    Электрическая энергия — это энергия переноса заряда от одного потенциала к другому. Вообще всякая окислнтельно-восста-новителькая химическая реакция сопровождается переходом электрона от одного ядра к другому, однако в обычных условиях этот переход осуществляется непосредственно, процесс полностью необратим и в результате нельзя получить электрической энергии. Например, если опустить цинковую пластинку в раствор Си304, то цинк растворяется, переходя в виде ионов Zn + в раствор, а ионы Си2+ осаждаются в виде атомов меди на электроде, т. е. протекает процесс [c.365]

    Мы рассмотрели частный случай возникновения разности потенциалов за счет окислительно-восстановительного процесса вытеснения одного металла другим, но вообще любая реакция, идущая с изменением степеней окисления, может служить источником электрической энергии. Чтобы получить электрический ток, т. е. заставить электроны двигаться по проводнику, нужно упорядочить хаотический обмен связями и электронами. Обычно для этой цели используют инертные электроды, не посылающие свои электроны в раствор, а именно Р1, Сграф т. Так это и было сделано в нормальном водородном электроде (см. рис. 122) поверхность губчатой платины насыщали водородом, который, частично диссоциируясь на атомы, давал скачок потенциала с раствором ионов Н+(Н.зО" ). [c.236]


Смотреть страницы где упоминается термин Ионы электрическая энергия: [c.274]    [c.169]    [c.229]    [c.266]    [c.142]    [c.151]    [c.64]    [c.3]    [c.315]    [c.157]    [c.228]    [c.131]    [c.265]    [c.463]    [c.101]   
Физическая химия Том 2 (1936) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы энергия,

Электрическая энергия

Энергия ионов



© 2025 chem21.info Реклама на сайте