Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор содержание кислорода

    Химия перестала быть мешаниной названий времен алхимии (см, гл. 2), когда каждый химик, используя собственную систему, мог поставить в тупик коллег. Была разработана система, основанная на логических принципах. По названиям соединений, предложенных этой номенклатурой, можно было определить те элементы, из которых оно состоит. Например, оксид кальция состоит из кальция и кислорода, хлорид натрия — из натрия и хлора, сульфид водорода — из водорода и серы и т. д. Четкая система приставок и суффиксов была разработана таким образом, что стало возможным судить о соотношении входящих в состав веществ элементов. Так, углекислый газ (диоксид углерода) богаче кислородом, чем угарный газ (монооксид углерода). В то же время хлорат калия содержит больше кислорода, чем хлорит калия, в перхлорате калия содержание кислорода еще выше, тогда как хлорид калия совсем не содержит кислорода. [c.50]


    Сухая смесь водорода и хлора взрывается при содержании водорода 3,5—97%, т. е. смеси, содержащие менее 3,5% водорода или менее 3% хлора, невзрывоопасны. Кислород способствует активизации газовой смеси. Смесь водорода с воздухом взрывается при содержании водорода в пределах 4,1—74,2%. [c.41]

    Эффективность автоматизированных систем обработки эколого-ана-литической информации заметно повьппается при использовании автоматических станций контроля загрязнений воды и воздуха. Локальные автоматизированные системы контроля загрязнений воздуха созданы в Москве, Санкт-Петербурге, Челябинске, Нижнем Новгороде, Стерлита-макс, Уфе и других городах. Проводятся опытные испытания станций автоматизированного контроля качества воды в местах сброса сточных вод и водозаборах. Созданы приборы для непрерьшного определения оксидов азота, серы и углерода, озона, аммиака, хлора и летучих углеводородов. На автоматизированных станциях контроля загрязнений воды измеряют температуру, pH, электропроводность, содержание кислорода, ионов хлора, фтора, меди, нитратов и т.п. [c.27]

    Выразим процентное содержание хлора и кислорода в этих соединениях по общей формуле [c.108]

    Регенерацию проводят в условиях ограниченной влажности и с защитой компрессоров от хлора. Поэтому в схему регенерации включают заранее высушенные адсорберы, заполненные цеолитом ЫаА. Включают компрессор и обеспечивают циркуляцию на инертном газе (азоте), поднимают температуру на входе в реакторы до 250-270°С и начинают подачу воздуха в первый реактор, доводят концентрацию кислорода в подаваемой азото-воздушной смеси до 0,5-0,6% об. Через несколько часов горения кокса на катализаторе доводят концентрацию кислорода до 11% об. и выжигают основную массу кокса при температуре от 300 до 400°С. На этой стадии воздух подают во все реакторы для ускорения выжига кокса. Контроль за процессом горения осуществляют с помощью зонных термопар, не допуская резкого повышения температур в слое катализатора, а также с помощью аналитического контроля за содержанием кислорода и углекислого газа на входе и выходе из реакторов. [c.140]

    Соотношение между скоростями выделения на аноде хлора и кислорода определяется целым рядом факторов. Для обеспечения протекания анодного процесса с образованием хлора необходимо использовать соответствующий материал анода и поддерживать определенные условия электролиза — pH раствора электролита, содержание хлорида натрия в растворе электролита, плотность тока, температуру процесса. [c.139]


    При низких концентрациях кислорода скорость коррозии существенно уменьшается оптимальное содержание Oj составляет 4,0 Ю" %. При содержании кислорода в воде 8-10 мг/л потенциал коррозии алюминия увеличивается, но остается в пределах пассивной области. Однако при наличии в аэрированной воде хлор-ионов 0,01 моль/л и выше потенциал коррозии алюминия находится в активной области растворения металла. [c.25]

    Исследования показали, что при применении пропитанных анодов изменяется соотношение выделяющихся на аноде хлора и кислорода в пользу хлора. Выход хлора по току возрастает (затраты тока на выделение кислорода снижаются). Несколько увеличивается содержание свободного кислорода в хлоргазе за счет уменьшения количества образующейся СО а- [c.63]

    Качество водорода в большей степени, чем хлора, зависит от метода производства. При производстве по методу электролиза с твердым катодом и диафрагмой водород обычно, помимо паров воды, может содержать щелочной туман и воздух в результате подсоса последнего через неплотности злектролизеров и коммуникаций. В водород могут иногда попадать следы хлора, если имеются повреждения диафрагмы и нарушения условий отсасывания хлора и водорода из электролизеров. В некоторых случаях в водороде обнаруживают значительное содержание хлорорганических примесей (до нескольких десятков мг/м ), отдуваемых водородом из электролитических щелоков. Чистота водорода должна быть не ниже 98% и содержание кислорода не более 0,5%. [c.239]

    Сырьем дпя производства синтетической соляной кислоты служат водород, хлор и вода. Водород получают в производстве каустической соды и хлора диафрагменным, ртутным и мембранным методами. Содержание водорода в техническом продукте не менее 98 об.%. Содержание кислорода регламентируется на уровне 0,3-0,5%. При использовании водорода, полученного ртутным методом электролиза хлорида натрия, содержание ртути должно быть не более 0,01 мг/м . [c.57]

    Обычно в новых баллонах содержание кислорода высокое, но после того как одна треть жидкого хлора израсходована, содержание кислорода в газе значительно снижается. [c.83]

    В зависимости от условий поляризации потенциал ПТА при одинаковых прочих условиях может изменяться на 0,4—0,5 В. С ростом потенциала изменяется соотношение скоростей разряда кислорода и хлора. Каждому значению потенциала ПТА отвечает определенное содержание кислорода в анодно.м газе и выход кислорода по току независимо от того, каким образом получен этот потенциал. Зависимость содержания кислорода в анодном газе от потенциала анода приведена на рис. У-11. В процессе анодной поляризации происходит [c.154]

    Производства, пожарная опасность которых определяется присутствием в них хлорированных углеводородов, содержащих более 50% вес. связанного хлора, относятся к категории В (СНиП И-М. 2—62) и классу П-1 и П-П1 (ПУЭ). Тушить распыленным водным щелочным раствором при объемном тушении использовать азот, пар, дымовые газы с содержанием кислорода не более 10% объемн. [c.211]

    При давлении 0,1 МПа мольное содержание двухатомных компонентов в смеси с одноатомными для фтора, хлора, водорода, кислорода и азота составляет 95% соответственно при темпера- [c.227]

    По ГОСТ предусматривается также определение во всех марках водорода содержания минерального масла, а в отдельных марках водорода - определение содержания щелочи, сероводорода и хлора. Содержание кислорода, азота, метана, оксида углерода и диоксида углерода определяют методом газовой хроматографии. Для этой цели используют хроматограф с детектором по теплопроводности. В качестве сорбента применяют молекулярные сита СаХ, а для отделения диоксида углерода - сорбент, пропитанный р,р - окси-пропионитрилом. Количество компонентов в водороде определяют методсж абсолютной калибровки, т.е. готовят эталонную смесь. [c.195]

    Установка фирмы Progil—Ele tro himie ie. (рис. 48) работает с фракцией пропан-пропилен и хлором, в которых ограничивается содержание кислорода. Два реактора установлены последовательно. Хлор подается только в первый реактор, а Сд-фракция распределяется на оба реактора. Температура регулируется количеством разбавп-теля — четыреххлористого углерода и охлаждением реакторов. В первом реакторе поддерживается температура 450 °С, во втором — 550 °С (возможен и вариант с тремя реакторами, в которых устанавливаются температуры 460, 530 и 560 °С) [195—196]. Выход перхлор- [c.202]

    Соляную кислоту получали в две стадии сжиганием водорода в хлоре в стальной двухконусной печи и абсорбцией хлористого водорода водой в абсорбционных колоннах. Газообразный хлор из цеха электролиза через регулирующий вентиль и измерительную диафрагму поступал в горелку печи. Водород, также поступающий из цеха электролиза, проходил последовательно водоотделитель, пламегаситель, регулирующий клапан, диафрагму, регулирующий вентиль и поступал в горелку печи синтеза, где смешивался с хлором. В день аварии перед пуском печи открыли верхнюю свечу для вентиляции и люк для розжига печи. Анализ печной среды показал, что содержание кислорода в ней составляет 18,8%, поэтому печь была дополнительно продута азотом. После этого приступили к розжигу печи. В момент розжига произощел взрыв, который по трубопроводу распространился в абсорбционную колонну. В печи синтеза разорвалась предохранительная мембрана абсорбционная колонна была разрушена. Как показали результаты расследования неработающая печь синтеза была отключена от коллектора только вентилем. На трубопроводе водорода не ыли установлены заглушки. Через неплотности вентиля водород пр01нпк в печь синтеза и абсорбционную колонну. По этой же причине в печь проник хлор, что и привело к взрыву. [c.351]


    Суммарная энергия активации равна около 29,4 ккал/моль. Экспериментально полученная величина составляет около 34 ккал/моль, что достаточно хорошо согласуется с теорией и доказывает, что взаимодействие хлора с водородом протекает через свободные радикалы. В самом деле, величина Е , рассчитанная, исходя из предположения о бимолекулярном механизме, равна около 75 ккал/моль, что сильно расходится с экспериментальными данными. Подтверждением радикального механизма образования H I является и тот факт, что реакция ингибируется кислородом. Общая скорость реакции пропорциональна содержанию хлора и обратно пропорциональна содержанию кислорода и поверхности peaктора. [c.264]

    На втором этапе оксихлорирования хлорсодержащие соединения подают при 510 С, содержании кислорода 5% и молярном соотношении Н20 НС1, обеспечивающем необходимое содержание хлора в катализаторе и узкое распределение кластеров металлической фазы по размеру. Последующая стадия сул1ки и прокаливания необходима для полного окисления платины и подготовки катализатора к восстановлению. Для установок со стационарным катализатором разработаны два способа оксихлорирования - медленный и ускоренный. Последний хорошо себя зарекомендовал на установках Новокуйбышевского НПЗ. Применяемый катализатор эксплуатируется в течение 20 лет. Ускорению скоростей регенерации и оксихлорирования способствует также ведение их одновременно и параллельно во всех реакторах. На установках с непрерывным выжигом регенератор состоит обычно из 5- 6 зон нагрева, регенерации, оксихлорирования, сушки, прокалки и охлаждения. [c.167]

    Превращение трихлорфенола в продукты, нерастворимые в щелочном растворе, характерно в случае проведения реакции в щелочной среде и когда в качестве исходного продукта взят трихлор-фенолят. Эти продукты характеризуются более высокой средней степенью поликонденсации —17- 22, содержат меньшее количество хлора и фенольных гидроксилов, чем щелочнорастворимые фракции, однако содержание кислорода в них высокое — до 22%. Это позволяет сделать вывод о том, что ароматические ядра в основном связаны через эфирный кислород. [c.149]

    Наиболее распространенным методом утилизации ОСМ (до 90% от их сбора) до сих пор остается сжигание — либо с целью простого уничтожения, либо (что осуществляется чаще) при использовании в качестве котельно-печного топлива или его компонента. Поэтому для характеристики антропогенного загрязнения атмосферы важен также анализ продуктов сгорания ОСМ. Рассмотренные выше исследования португальского института ШЕТ1 проводились в горизонтальной многосекционной печи с термической мощностью 240 кВт [170]. В табл. 2.12 и 2.19 представлены характеристики отработанных масел и условия их сжигания. Определение общего содержания металлов и их распределения как функции размера частиц возможно методом атомно-абсорбционной спектроскопии установка газоанализатора на линии выхлопа позволяет оценить содержание кислорода, оксида и диоксида углерода, оксидов азота и диоксида серы содержание хлора и брома определяется методом периодического поглощения их раствором кальцинированной соды с последующим потенциометрическим титрован ие.м. [c.100]

    Хлорирование бутадиена осуществляется в газовой фазе при атмосферном давлении и температуре 27O—300 °С без применения катализатора. Реакция хлорирования экзотермична, температура процесса регулируется подачей хлора. Во избежание коррозии реактора бутадиен и хлор должны быть тщательно осушены до содержания влаги не более 10 млн . Строго ограничивается также содержание кислорода, являющегося ингибитором реакции хлорирования. В результате присоединения хлора к бутадиену образуются 3,4-дихлорбутен-1 и изомеры 1,4-дихлорбутена-2 Л-Цис-и , i-транс-), побочные продукты хлорирования и хлористый водород, который играет в данной реакции роль разбавителя, ограничивающего образование побочных продуктов. Выход дихлорбу-тенов составляет 80—90 % на прореагировавший бутадиен соотнощение получаемых 3,4-дихлорбутена-1 и 1,4-дихлорбутена-2 составляет примерно 40 60. [c.231]

    На анодах при работе электролизера выделяются хлор и кислород или диоксид углерода в зависимости от вида используемых анодов. Кроме того, с анодным газом смешивается водород, образующийся на ртутном катоде. При норма 1ьных условиях электролиза хлоргаз содержит 0,5% (об.) водорода. Однако при нарушениях процесса электролиза, например при нарушении циркуляции ртути либо попадании в раствор или ртутный катод железа и примесей (так называемых амальгамных ядов —хрома, ванадия и некоторых других) возможно усиленное выделение водорода. Это, помимо снижения выхода по току щелочного металла на катоде, приводит к снижению качества хлоргаза и за счет подщелачивания раствора резко повышает содержание растворенного хлора в анолите, что может нарушить в дальнейшем стадию очистки раствора. При заметном повышении содержания водорода в хлоргазе отдельных ванн эти ванны должны быть отключены и устранены причины (повреждение гуммировочного слоя, снижение скорости циркуляции ртути и др.), приведшие к повышению содержания водорода в хлоргазе. [c.91]

    Используя расчетные формы, описывающие область устойчивого горения, получены зависимости предельных размеров горения от содержания кислорода. Рассчитана с использованием энтатьпии образования полимеров адиабагическая температура сте-хиометрических смесей продуктов разложения полимеров с окислителем и определено, что с увеличением содержания хлора в составе полимеров наблюдается увеличение кислородного индекса, предельных размеров горения и понижение адиабатической тем пературы. [c.95]

    В процессе хлорирования обрыв цепи реакции может возникнуть в результате различных причин рекомбинации атомов хлора и радикалов (СГ + -f СГ = СЬ В В" == В — В) на стопках сосуда, реакции между атомами хлора и кислорода с образованием СЮг. Ингибитором фотохимического хлорирования является такнл-е хлорное железо, при содержании которого в реакционной массе около 0,003% скорость реакции значительно снижается. [c.361]

    Неогран,ические адсорбенты-гели, например силикагель или активированная окись алюминия, также обнаруживают эту избирательность адсорбции полярных молекул, но в значительно меньшей степени, чем молекулярные сита. Весьма большие адсорбционные силы, существующие в молруляр-ных ситах, обусловлены главным образом присутствием катионов на адсорбирующих поверхностях кристалла. Эти катионы играют роль центров, несущих сильный положительный заряд, который в соответствии с законами электростатики притягивает отрицательный хвост полярных молекул. Чем сильнее полярность молекулы, т. е. чем больше ее ди-польный момент, тем сильнее притяжение ее к зарядам катиона и тем прочнее она адсорбируется. Полярные молекулы обычно характеризуются содержанием кислорода, серы, хлора или азота или асимметричностью строения. [c.206]

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]

    Для обеспечения большей безопасности работы на стадии очистки водорода от кислорода электролитические газы можно разбавлять очиш,енным водородом, возвраш ая часть водорода после очистки от кислорода и охлаждения обратно в цикл для снижения содержания кислорода в смедд, поступающей в контактные печи. В тех случаях, когда водород не может быть рационально использован на предприятии, его выбрасывают в атмосферу. При этом электролитические газы разбавляют инертными газами — азотом или двуокисью углерода в зависимости от местных условий. Можно применять для этой цели воздух, однако требуется подача минимум 25— 30-кратного количества воздуха по отношению к продуцируемому в электролизерах водороду. При разбавлении газов воздухом возможен повышенный унос брызг электролита из электролизеров и усложняется санитарная очистка от хлора большого объема газов, выбрасываемых в атмосферу. [c.392]

    Процесс анодного окисления соляной кислоты до хлорной сильно зависит от температуры. На рис. 8-3, б показана зависимость выхода продуктов электролиза по току от температуры раствора [63] при содержании в электролите 4 н. H IO4 и 1 н. НС1 и потенциале анода 2,8—3,0 В. С понижением температуры выход хлорной кислоты по току возрастает, а хлора и кислорода соответственно снижается. [c.428]

    Сгорания до К2О4 1895 ккал/кг. Т. самовоспл. 440— 455° С (в воздухе) т. самовоспл. —50" С (в кислороде) миним. содержание кислорода для горения 5,0% объемн. скорость выгорания 1,0—1,4 кг/(м -мин)-, т. горения - 700°С. Дым — плотный белый [1]. Расплавленный в атмосфере двуокиси углерода при высоких температурах воспламеняется, как правило, со взрывом. Бурно реагирует (с воспламенением) со фтором, хлором и иодом, особенно энергично — с бромом (со взрывом). Реакция с жидкой фтористоводородной кислотой сопровождается горением. Тушить составом ПС-1, сжиженными инертными газами. При тушении в За1 рытых помещениях наибольший эффект дают азот и аргон. Тушение см. также Металлы. Средства тушения. [c.117]

    Во избежание коррозии реактора (хлоринатора) хлор и бутадиен должны быть тщательно высушены до массового содержания влаги ие более 10 %. Строго ограничивается также содержание кислорода, являющегося ингибитором реакции. В результате хлорирования бутадиена получают реакционные газы, содержащие 3,4-дихлор-1-бутен, 1,4-дихлор-2-бутен (1,4-i u - и 1,4-транс-формы), хлороводород, а также небольшие количества тетрахлорбутана и других побочных продуктов. Хлороводород ограничивает образование побочных продуктов. Соотношение получаемых 3,4-дихлор-1-бутена и 1,4-дихлор-2-бу-тена составляет примерно 40 60 при общем выходе дихлорбутенов 80—90% от прореагировавшего бутадиена. [c.109]

    Большой интерес представляет хлорированный хлоропреновый каучук (хлорнаирит). Условия хлорирования полихлоропренов аналогичны условиям хлорирования полиизопренов. Хлорирование проводят в дихлорэтане или хлороформе при 45 °С и дневном освещении в присутствии азобисизобутиронитрила, а на последних стадиях хлорирования для разрушения гель-фракции и снижения молекулярной массы полимера к хлору добавляют кислород [97, 98]. Предельное содержание связанного хлора составляет 68%. [c.16]

    По данным А. Н. Саханена [1] при окислении тяжелых остатков кислородом и хлором содержание серы снижается в 3—5 раз. Однако это не подтверждается опытом. После окисления сырья воздухом количество серы в коксе снизилось всего лишь на 0,1%, что нельзя признать удовлетворительным (табл. 1). [c.77]

    Холостой опыт. Помещают подготовленную пробу (5 г высокочистого титана с известным содержанием кислорода) в предварительно прокаленную кварцевую лодочку и заполняют ее свежеизмель-ченньш графитом. Разравнивают шпателем содержимое лодочки (необходимо следить за тем, чтобы проба всегда была покрыта графитом). Используя хлор высокой чистоты, можно с достаточной точностью выполнить холостое определение только с одним графитом. Высушивают пробу 30 мин при 105 °С и помещают ее, не охлаждая, в печь. Далее продолжают, как описано в методике. [c.83]

    Каутский и Пфанненстил [137] приготовили подходящий гидрирующий катализатор из раствора соли никеля, в котором металл осаждался помощью кислородных соединений кремния, содержание кислорода в которых должно быть меньше, чем в окиси кремния, например применяют силоксен. Запатентован способ приготовления никелевого катализатсра [406] заключающийся в покрытии аморфным никелем зерен металлического никеля, употребляемого в качестве носителя. На никелевую проволоку диаметром 2 мм действуют хлором при 150° при этом наружный слой металла превращается в хлористый никель, а середина остается неизмененной. Обработка газообразным аммиаком при той же температуре ведет к образованию летучего хлористого аммония, который уходит, а хлорид металла превращается в губчатый пористый металл, отложенный на неизмененном никеле. Другой активный никелевый катализатср получается пропиткой содержащего углерод вещества раствором азотнокислого никеля с последующей сушкой, восстановлением и окислением при 800° [45]. В одном из патентов [85] рекомендуется способ приготовления высокоактивного никелевого катализатора, пригодного для процессов восстановления. Соединения металла, употребляемого в виде катализатора, восстанавливают водородсм при начальной температуре 150—250°, причем, по мере хода реакции восстановления, температура повышается до 200—450°. Кроме того, в начале восстановления вводится небольшое количество газовой смеси, состоящей в основном hs инертного газа с небольшим количеством водорода, процесс проводится дальше с газовой смесью, содержащей больше водорода, чем в начале, и заканчивается со смесью, содержащей большой процент чистого водорода. [c.274]


Смотреть страницы где упоминается термин Хлор содержание кислорода: [c.206]    [c.130]    [c.92]    [c.213]    [c.194]    [c.146]    [c.51]    [c.48]    [c.404]    [c.745]    [c.14]    [c.782]    [c.17]   
Химико-технические методы исследования Том 2 (0) -- [ c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород содержание

Кислород хлором



© 2024 chem21.info Реклама на сайте