Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие термодинамическая теория

    Рассмотрены вопросы термодинамической теории гетерогенных равновесий в приложении к системам жидкость—пар, структура диаграмм фазового равновесия, методы экспериментального изучения равновесий жидкость—пар. Особое внимание уделено возможностям проверки термодинамической согласованности экспериментальных данных и методам априорного расчета равновесий жидкость—пар в многокомпонентных системах. [c.2]


    Термодинамическая теория перегонки основана на использовании введенного в главе I понятия равновесного процесса, в котором интенсивные свойства системы приобретают определен-, ность, позволяющую вести расчеты с помощью диаграмм состояния и уравнений парожидкостного равновесия на основе материального и энергетического балансов. [c.63]

    Наличие экстремальных, максимальных или минимальных точек на кривых равновесия, термодинамическая теория растворов объясняет ассоциацией или диссоциацией молекул одного из жидких компонентов раствора, и это вполне оправдывается опытом. Если проанализировать, какие пары жидкостей образуют растворы, характеризующиеся максимумом суммарной упругости паров при постоянной температуре системы, то окажется, что большинство известных пар таких компонентов представляют смеси жидкостей, содержащих гидроксильную группу смешанных с жидкостями, свободными от гидроксильных групп. Такого рода смеси имеют тенденцию к ассоциации. С другой стороны, водные растворы галоидоводородных кислот, характеризующиеся явно выраженной диссоциацией, относятся к категории растворов, у которых изотермические кривые кипения и конденсации имеют точку минимума (фиг. 4). [c.13]

    ТЕРМОДИНАМИЧЕСКАЯ ТЕОРИЯ ФАЗОВЫХ РАВНОВЕСИЙ 100. Основные понятия [c.319]

    Эта постановка задачи (если отвлечься от рассмотрения химических реакций) составляет основную проблему термодинамической теории стабильности. Возникает вопрос, не препятствует ли приведенное выше ограничение общности выводов. На самом деле это не так, потому что понятие стабильности, так же как и понятие равновесия, имеет физический смысл только по отношению к рассматриваемому процессу. Общность была бы лишь тогда сомнительна, если бы были возможны смещения, которые можно представить через величины состояния и которые бы не содержались в приведенной выше формулировке или по крайней мере к ней не сводились бы. [c.199]

    Начиная с 1958 г. Щербаков разрабатывал термодинамическую теорию очень мелких капель и кристаллов изометрической формы. Он ввел соответствующую поправку в уравнение Гиббса—Томсона для этого случая. В 1959—1961 гг. Щербаков произвел теоретический анализ теплоты сублимации мелких кристаллов и теплоты испарения малых капель. Особый интерес представляют условия, при которых реализуется равновесие капли, лежащей на подложке, смоченной полимолекулярным слоем той же жидкости, из которой состоит сама капля. Этот случай, на который в 1938 г. обратил внимание Фрумкин, был теоретически рассмотрен Щербаковым и Рязанцевым в 1961 г. [c.94]


    Зависимость давления насыщенного пара от состава жидкого раствора. Уравнение Дюгема — Маргулеса. Закон Рауля установлен экспериментальным путем. Он справедлив только для идеальных систем. Однако термодинамическая теория указывает на то, что определенная зависимость между давлением пара и концентрацией должна существовать для любого раствора. Действительно, при постоянной температуре равновесие жидкость—пар в двухкомпонентной системе характеризуется одной степенью свободы (С = К + 1 — Ф = = 2 + 1 — 2), т. е. каждой произвольно заданной концентрации раствора будет отвечать строго определенное давление насыщенного пара. Эта зависимость находится из уравнения Гиббса—Дюгема (VII.35)  [c.181]

    В развитии термодинамической теории равновесий выдающаяся роль принадлежит Дж. Гиббсу (1873 — 1878), который разработал общую теорию термодинамических функций, вывел правило фаз и заложил основы статистической термодинамики. [c.7]

    Учение о химическом равновесии получило термодинамическую основу в работах Вант-Гоффа, Гельмгольца, Потылицина, Горст-мана в 70—80 годах (уравнения изотермы химической реакции, уравнение изобары и изохоры реакции и др.). В то же время Гиббсом были разработаны общая термодинамическая теория равновесий и система термодинамических функций, которые в последующий период послужили основой термодинамики химических реакций. [c.17]

    Определение зависимости активности или коэффициента активности от давления, температуры и состава составляет главную задачу термодинамической теории реальных растворов при изучении равновесия между жидкостью и паром эти зависнмости должны согласовываться с уравнением Гиббса—Дюгема. [c.184]

    Термодинамическая теория растворов ставит перед собой более скромные цели. По существу она рассматривает две задачи. Первая состоит в разработке способов расчета по опытным данным изменений интересующих нас термодинамических функций при изменении состава раствора. Вторая — это вычисление одних термодинамических параметров растворов, если получены сведения о других параметрах. При этом термодинамика позволяет указать на тот минимальный объем экспериментальных данных, который необходим для получения интересующих нас сведений. К большим достижениям термодинамики растворов можно отнести расчеты химических равновесий на основании данных, относящихся только к физическим свойствам растворов. [c.82]

    Пусть индивидуальная жидкость или раствор занимает объем V и находится в состоянии термодинамического равновесия. Разделим V на области с , (г = 1, 2, п). В ходе теплового движения в жидкости будут возникать флуктуации. В различных областях V. температура, плотность, концентрация и другие физические величины могут принимать неодинаковые значения. Термодинамическая теория флуктуаций основана на допущении, что внутренняя энергия (или свободная энергия для системы в термостате при заданной температуре) аддитивно слагается из энергий областей v , т. е. и = О = 20.. Энергия [c.128]

    Минуло столетие со времени создания Гиббсом теории капиллярности, опубликованной в 1878 г. во второй части его знаменитой работы О равновесии гетерогенных веществ [1]. В отличие от всех предшествующих теорий и, в частности, теории капиллярности Лапласа, теория Гиббса имела термодинамический характер и до сих пор остается неотъемлемой частью гиббсовской термодинамики. Теория капиллярности Гиббса — первая детально развитая термодинамическая теория поверхностных явлений. [c.13]

    Гленсдорф и Пригожин распространили термодинамическую теорию устойчивости на случай неравновесных условий. Они предположили, что для систем, далеких от фазовых переходов, выполняются неравенства (5)—(8) во всей области состояний, где возможно макроскопическое описание и где справедлива основная гипотеза локального равновесия. Далее они представили отрицательную величину 6 5 как функцию Ляпунова. Если вблизи неравновесного состояния, соответствующего приведенным выше условиям, возникают макроскопические возмущения основных переменных, они дают вклад в отрицательную величину 6 5. Условие устойчивости системы по Ляпунову означает, что временное изменение этой величины должно быть положительно, так что условие устойчивости для неравновесных систем имеет вид  [c.304]

    Наиболее объективные и точные методы проверки и обработки экспериментальных данных о равновесии между жидкостью и паром основаны на использовании термодинамической теории растворов, которая в последнее время находит все возрастающее практическое применеиие. При этом конкретные приложения основываются на использовании не строгих общих уравнений равновесия, а вытекающих из них на основании ряда допущений частных уравнении. В связи с этим представлялось необходимым привести вывод некоторых важнейших уравнений, чтобы читателю была ясна сущность допущений, лежащих в основе этих уравнений. Так как весьма затруднительно сочетать популярность изложения с присущей термодинамической теории растворов математической строгостью, последнюю в известной мере пришлось принести в жертву. [c.4]


    При обсуждении применения термодинамической теории растворов основное внимание было обращено на использование ее для проверки экспериментальных данных о равновесии между жидкостью и паром. При этом представлялось невозможным не упомянуть о развитых на основании этой теории методах вычисления данных о равновесии, поскольку эти методы имеют исключительно важное практическое значение. [c.4]

    Предлагаемая книга была задумана так, чтобы она могла служить и для ознакомления с предметом, с основами термодинамической теории фазовых равновесий и одновременно могла бы быть практическим руководством. В связи с этим в ней содержатся как основные, исходные положения термодинамики гетерогенных систем, так и рекомендации для реализации термодинамической теории в различных ее приложениях (методы расчета фазовых равновесий в многокомпонентных системах и методы проверки термодинамической согласованности экспериментальных данных о равновесии жидкость — пар). [c.3]

    Если законы Коновалова характеризуют изменение состояния равновесия двухкомпонентных двухфазных систем при изобарных или изотермических условиях, то законы (правила) Вревского определяют закономерности влияния на фазовые равновесия бинарных систем изменений температуры и давления при наложении определенных условий на изменения составов равновесных фаз. Как и законы Коновалова, законы Вревского [201 лежат в основе термодинамической теории равновесия жидкость — пар и составляют классическое наследие Ленинградской физикохимической школы. [c.40]

    Изложены теория равновесия, кинетика и динамика ионного обмена, приведены методы расчета ионообменных процессов. Рассмотрены различные модели ионообменного равновесия, термодинамическая теория сверх-эквивалентной сорбции, вопросы обмена на бипористых и поверхностнослойных ионитах. [c.175]

    Прежде чем переходить к проблеме устойчивости неравновесных состояний, полезно напомнить хорои о известную теорию устойчивости термодинамического равновесия. Первоначальная теория была создана Гиббсом [51], позднее она была усовершен- [c.54]

    Учет фазовых равновесий очень важен для понимания или анализа любого процесса массопередачи. Именно здесь многое должна определять термодинамика, поскольку второй закон устанавливает условия равновесия. Термодинамическая теория разработана достаточно хорошо, хотя на практике она не дает необходимой связи между активностями и концентрациями. В одних случаях эта зависимость известна. В других случаях может оказаться достаточным эмпирическое правило Льюиса и Рэн-долла, правда, иногда может потребоваться и более затрудненный анализ, построенный на сложных уравнениях состояния или на молекулярной теории. Так или иначе, студент либо инженер, имеющий дело с проблемами переноса массы, должен знать и теорию, и эмпирические факты термодинамики фазовых равновесий. Кроме того, с помощью первого закона термодинамики можно проводить вычисления необходимых балансов энтальпий, [c.14]

    В книге излагаются основы теории парожидкого равновесия в системах реальных растворов, элементы учения о межфазовой массопередаче, термодинамическая теория перегонки и ректификации полностью и частично растиорпмых бинарных систем, вопросы азеотропной и экстрактивной перегонки, методы расчета ректфи кации углеводородных смесей в присутствии перегретого водяного пара. Значительная часть книги носвя-щена теории и расчету перегонки и ректификации многокомпонентных смесей. [c.2]

    В развитии термодинамической теории равновесий, в частности равновесий в химических реакциях (гомогенных и гетерогенных), выдающаяся роль принадлежит работам В. Гиббса (1873—1878) и Ле-П1ателье, который открыл (1885) общий принцип смещения равновесий при изменении внешних условий. Термодинамическая теория химических равновесий получила развитие в работах Вант-Гоффа. Им же была разработана количественная теория разбавленных растворов (1886). [c.17]

    Гиббс [4] в своем фундаментальном исследовании равновесия гетерогенных систем (1875—1878 гг.) сумел преодолеть все эти трудности и создал внутренне непротиворечивую термодинамическую теорию, которая включила величины, характеризующие и объемные свойства, и свойства, связанные с поверхностью. Чтобы избежать затруднений, возникающих при разделении свойств на объемные и поверхностные , Гнббс предложил следующий метод. Представим себе наряду с реальной системой, свойства которой изменяются более или менее постепенно при переходе от одной фазы к другой (рис. 21, а), некую идеализированную систему, в которой свойства каждой фазы одинаковы во всем ее объеме, вплоть до математической плоскости, разделяющей фазы, где они [c.77]

    Условие равновесия для системы, где происходит химическая реакция, выведено нами в связи с рассмотрением общей термодинамической теории равновесия [формула (1Х.32)]. Из условия (1Х.32) легко получить основной закон химического равновесия— закон действия масс, если химические потенциалы в явной форме выразить через концентрации или парциальные давления компонентов. Впервые закон действия масс был сформулирован норвежскими учеными Гульдбергом и Вааге (1867) на основе кинетического рассмотрения идеальных газов. [c.240]

    Б. В. Дерягин с сотр. разработал термодинамическую теорию устойчивости свободных пленок. В соответствии с этой теорией длительное существование пленки объясняется высоким энергетическим барьером, отделяющим состояние относительно устойчивого, метастабильного, равновесия пленки от абсолютно устойчивых состояний системы после прорыва пленок. Одна из причин возникновения барьера — расклинивающее давление. Б. В. Дерягин и А. С. Титиев-ская экспериментально показали, что утончению пленок до толщины ниже равновесной для данного давления препятствует взаимодействие диффузных частей адсорбционных слоев пенообразователя. [c.194]

    В середине 1880-х годов были опубли кованы и другие основополагающие работы по. химической термодинамике. Р Лг Шателье сформулировал свой знаменитый принцип подвижного равновесия [7], вооружив химиков методами сознательного управления смещением равновесия в сторону образования целевых продуктов. В середине 1880-х годов стала известной в Европе работа Дж. Гиббса О равновесии гетерогенных веществ , опубликованная в 1876—1878 гг. в США [8] т содержащая (ставшее также знаменитым) правило фаз н новые аналитический и геометрический методы исследавання и описания условий равновесия через термодинамические потенциалы. В этой работе Дж. Гиббса были заложены основы термодинамической теории поверхностных явлений, получившей развитие в 1930—1940 гг. в учениях о сорбционных явлениях и о катализе. [c.113]

    Обратимся теперь к термодинамической теории фазовых переходов второго рода. Как и прежде, задача сводится к нахождению кривой р(Т), описывающей условия равновесия фаз. На опыте для фазовых переходов второго рода можно определить величины АСр, Аа, Др. Как эти данные описывают области существования фаз Для переходов первого рода в однокомпонентной системе [c.131]

    В а н-д е р-В а а л ь с Ян Дидерпк (1837—1923) — голландский физик. Вывел уравнение состояния реального газа, общее дифференциальное уравнение фазовых равновесий в бинарных системах. Внес вклад в термодинамическую теорию капиллярности. Лауреат Нобелевской премии. [c.133]

    В термодинамической теории свойства фаз определяются через их макроскопические характеристики и не рассматривается молекулярное и электронное строение. Между тем именно характер взаимодействия компонентов на молекулярном уровне, особенности химической связи, т. е. распределение электронной плотности между атомами в пределах первой координационной сферы, определяют, в конечном итоге, строение диаграмм состояния. Однако, основываясь на термодинамических характеристиках компонентов (параметрах стабильности) и учитывая характер их взаимодействия (определяемый параметрами взаимодействия), можно теоретически рассчитать линии фазового равновесия и вывести основдые типы диаграмм состояния. [c.13]

    Впервые существование флуктуаций концентрации было установлено М. Смолуховским на основании теоретического анализа работ Д. И. Коновалова о давлении насыщенного пара растворов. Работа М. Смолуховского была исходным пунктом исследований А. Эйнштейна и многих других авторов по вопросам теории флуктуаций и рассеяния света флуктуациями. Пусть и Л г — числа молекул компонентов / и 2 в замкнутой области V раствора. Состав двухкомпонентного раствора будем характеризовать отношением с = МгШх. Область V содержит достаточно большое число молекул, чтобы ее состояние можно было описать с помощью термодинамических функций. Флуктуации концентрации Ас = с — < с > подчиняются нормальному распределению. Пусть Яг означает парциальное давление насыщенных паров компонента 2, т. е. паров, находящихся в термодинамическом равновесии с раствором. Согласно термодинамической теории флуктуаций [c.151]

    Развиваемый здесь метод объединяет различные точки зрения уравнения баланса (как в линейной неравновесной термодинамике), классическую термодинамическую теорию устог1чивости, теорию устойчивости Ляпунова и обобщение флуктуационной формулы Эйнштейна. Это необходимо для единого описания макроскопической физики, включая и обратимые, и необратимые процессы, протекающие как вблизи, так и вдали от равновесия. Следует отметить, что еще Льюис [111] предложил объединить теорию флуктуаций и термодинамику. Однако он имел дело только с равновесными явлениями, где влияние флуктуаций пренебрежимо мало (за исключением критических явлений). [c.12]

    Эта книга связана с весьма знаменательным событием в жизни мировой научной общественности. В 1978 г. исполнилось сто лет со времени выхода в свет второй части классического труда Гиббса О равновесии гетерогенных веществ , в которой он изложил свою термодинамическую теорию капиллярности. Значение этой теории трудно переоценить. Будучи фундаментальной и разработанной во множестве аспектов, она до сих пор составляет основу всей термодинамики поверхностных явлений и играло важнейшую роль в современной науке о поверхностях и колетидах. [c.11]

    Как уже указывалось выше, при эксиериментальном оире-делении данных о равновесии могут иметь место погрешности, обусловленные несовершенством методики исследования, применением загрязненных веществ, неточностью анализов и другими причинами. Кроме того, как и во всякой экспериментальной работе, неизбежны случайные ногрешности. Поэтому перед исследователем и практиком возникает задача проверки и исправленпя экспериментальных данных. Современные методы решения этой задачи основаны на нримеиении термодинамической теории гетерогенного равновесия. [c.75]

    Согласно термодинамической теории растворов (Е. Гуген-гейм, 1952 г.) константа равновесия такого типа [c.206]


Смотреть страницы где упоминается термин Равновесие термодинамическая теория: [c.2]    [c.86]    [c.4]    [c.143]    [c.5]    [c.90]    [c.7]    [c.163]    [c.297]    [c.133]    [c.54]   
Методы практических расчетов в термодинамике химических реакций (1970) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие термодинамическое



© 2025 chem21.info Реклама на сайте