Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна взаимодействие с полимером

    Во всех случаях полимер склеивает стеклянные волокна, связывая их в единый монолитный материал, что должно приводить к лучшему сочетанию механических и других свойств по сравнению со свойствами составных частей. Хорошему сцеплению, сильной адгезии благоприятствует развитие хемосорбционного взаимодействия, что может проявляться в хорошей смачиваемости стеклянного волокна данным полимером. Естественно, что в этом отношении различные полимеры могут вести себя далеко не одинаково. Углеводороды, в особенности не содержащие кратных связей (полиэтилен, полипропилен), обладают такой способностью в минимальной степени, а некоторые кислородсодержащие полимеры хорошо связываются с поверхностью стекла, К ним относятся полиэфиры, эпоксидные смолы, соответствую- [c.227]


    Поскольку подвижности молекул ДНК различных размеров в свободных растворах из-за одинаковых соотношений поверхность/заряд не различаются, разделение по молекулярным размерам может не достигаться. Это делает необходимым применять среду с ситовыми свойствами. Ситовые свойства в простейшем смысле описываются взаимодействиями молекул анализируемых веществ с волокнами разделяющего полимера (геля). [c.103]

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]

    Прочность связи полимер-волокно лежит в основе главных свойств таких пластиков. Она определяется смачивающей или пропитывающей способностью связующего, величиной адгезии связующего к волокну, усадкой полимерной составляющей при ее отверждении (реактопласты) или затвердевании (термопласты), возможностью химического взаимодействия связующего и наполнителя, значением коэффициента объемного расширения компонентов пластика, относительной деформацией волокна и полимера под действием приложенной механической нагрузки. [c.57]

    При изучении взаимодействия полимеров с неорганическими веществами используют пленки с соответствующим высокодисперсным наполнителем. Так, пленки, полученные из связующего, наполненного кварцевым песком, аэросилом, силикагелем, применяют для изучения взаимодействия полимеров с порошкообразными наполнителями. Подобные образцы пригодны и при исследовании взаимодействия связующего с волокнами в различных композиционных материалах, например в стеклопластиках, хотя в этом случае более целесообразно использовать стеклянную вату, поскольку этот материал ближе к реальному наполнителю [208]. [c.29]


    Обширные исследования в области механизма взаимодействия полимера с наполнителем выполнены в последнее время Липатовым и др. Обнаружено существенное повышение температуры стеклования при введении наполнителя во многие полимеры. Стеклянное волокно, стеклянный порошок, бентонит, каолин, графит, двуокись титана и многие другие наполнители были исследованы в сочетании с полистиролом, полиметилметакрилатом, [c.139]

    Взаимодействие полимеров с волокнами [c.270]

    Прочность паронита (наполненного асбестом каучука) определяется главным образом силами взаимодействия полимера с асбестовыми волокнами и в значительно меньшей степени — прочностью каучука. Наиболее высокая прочность связи в системе каучук — асбест достигается при использовании полярных каучуков [90]  [c.337]

    Как известно, одним из методов формования волокна является формование из раствора. Поэтому большой интерес представляют система полимер — растворитель и процессы, происходящие при растворении полимера, при выделении его из раствора, а также поведение полимерных молекул в присутствии растворителя, т. е. процессы взаимодействия полимера с жидкостью, с которой он пришел в соприкосновение. Это взаимодействие выражается в поглощении полимером жидкости. Если поглощение происходит на границе раздела фаз, то этот процесс называется процессом сорбции. Сорбция в объеме вещества называется абсорбцией, сорбция а поверхности— адсорбцией. В зависимости от природы адсорбционных сил различают также адсорбцию физическую и химическую — хемосорбцию. Если при адсорбции изменяется объем полимера, говорят [c.139]

    Таким образом, для некоторых полимеров их адгезионное взаимодействие с волокнами можно оценивать при помощи критического поверхностного натяжения. Изменяя его, можно варьировать адгезию волокна к полимеру. [c.366]

    Стоит указать на одно интересное наблюдение, связанное с этими измерениями для полиакрилонитрила. Если образец содержит некоторое количество (несколько процентов) остаточного растворителя и подвергается растяжению, может случиться так, что ориентированным окажется не только полимер, но и растворитель. В частности, в экспериментах Бона [9] волокно полиакрилонитрила, полученное прядением из раствора в диметилформамиде, растягивалось вчетверо в горячей воде. Измерения этого образца в поляризованном свете с помощью ИК-микро-скопа (см. гл. V) показали, что следы растворителя, оставшиеся в волокнах, были умеренно ориентированы. Дихроичное отношение полосы поглощения групп — С = N на частоте 2245 оказалось равным 2,30 гЬ 0,12, в то время как для полосы колебаний групп С = О диметил-формамида на частоте около 1660 см оно было 1,44 + 0,05. Это явление указывает, что специфические взаимодействия полимер — растворитель заставляют молекулы растворителя укладываться так, что связи С = О преимущественно перпендикулярны оси полимерной цепи. Такие измерения на других системах могут дать ценную информацию о механизме взаимодействия растворителя и полимера. [c.23]

    Большое место в книге занимает изложение теории растворов полимеров. Это вызвано, во-первых, тем, что волокна и пленки часто формуются из концентрированных растворов, в которых возникают структуры, определяющие свойства изделия. Во-вторых, процессы растворения и набухания лежат в основе взаимодействия полимеров с различными веществами (жидкостями и парами). Знание теории разбавленных растворов очень важно для понимания методов определения молекулярного веса и формы молекул полимера. Значительное внимание, уделенное растворам полимеров, объясняется также и тем, что автор книги сам работает в этой области. [c.11]

    Процессы взаимодействия полимеров с низкомолекулярными жидкостями, приводящие к набуханию и растворению полимеров, имеют большое практическое значение как при переработке полимеров, так и при эксплуатации полимерных изделий. Так, например, многие синтетические волокна и пленки получаются из растворов. Процесс пластификации, распространенный в производстве изделий из полимерных материалов, основан на набухании полимеров в пластификаторах. Лаки и клеи — это растворы полимеров. Во всех перечисленных случаях очень важно, чтобы полимеры хорошо набухали и растворялись в низкомолекулярных жидкостях. [c.296]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки и полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, осуществляемая в производстве изделий, основана на набухании полимеров в растворителях — пластификаторах. Вместе с тем для практического применения полимеров важным свойством является устойчивость их в растворителях. Для решения вопросов о возможном набухании, растворении полимера в данном растворителе или об его устойчивости па отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.359]


    В то же время слабое взаимодействие волокна с матрицей и, в частности плохое смачивание волокна раствором полимера при пропитке, может приводить к образованию пористости в композите. Особо опасный вид пор—длинные вытянутые вдоль волокна полости, уменьшающие площадь его непосредственного контакта с матрицей. Наличие указанных пор, видимо, и определяет тот факт, что наибольшее изменение межслоевого напряжения сдвига наблюдается при росте пористости в интервале от О до 1%. Данные, приведенные на рис. 1, показывают,. [c.169]

    Мокрое формование. При мокром формовании волокна раствор полимера, пройдя через фильеру, попадает в виде тонких струек в ванну с жидкостью, которая вызывает коагуляцию полимера. Эта ванна называется осадительной ванной. В ней совершается ряд процессов, в том числе и химических, если вещества осадительной ванны вступают во взаимодействие с формуемой смолой. Растворителями смол при получении прядильных растворов являются щелочи, ацетон и другие растворители, способные растворять исходный материал с образованием концентрированных и вязких растворов. Мокрое формование проводится при повышенных температурах, снижающих вязкость прядильных растворов, ускоряющих кристаллизацию, формование и образование более плотных и прочных волокон. Мокрый способ применяется при формовании вискозного и некоторых других карбоцепных волокон. [c.300]

    Форма макромолекул в равновесном состоянии зависит от химического строения полимера, которое в значительной степени влияет на интенсивность межмолекулярного взаимодействия. Этот фактор в основном определяет соотношение высокоэластического и общего удлинений волокна. Большинство полимеров, используемых для получения волокон, содержит полярные группы и имеет сравнительно вытянутую форму макромолекул в равновесном состоянии. Поэтому величина высокоэластической деформации у этих соединений значительно меньше, чем у каучукоподобных полимеров. Изменяя условия формования волокна (из одного и того же полимера), можно в сравнительно широких пределах изменять величину замедленно-эластических деформаций (с большим периодом релаксации — более 0,5 мин) и тем самым суммарное удлинение волокна. Однако изменение условий формования не может существенно влиять на ускоренно-эластическое удлинение волокна, поскольку равновесная форма макромолекул зависит в основном от химического строения полимера. Поэтому, изменяя условия формования, нельзя приблизить гидратцеллюлозные волокна по эластическим свойствам к полиамидным. [c.111]

    Эти выводы, по нашему мнению, имеют большое значение для правильного понимания взаимодействия полимеров со стеклянными волокнами при получении стеклопластиков, тем более, что в этих случаях обычно используются концентрированные растворы полимеров, т. е. растворы, в которых может происходить заметное структурирование. [c.191]

    Полимеры, набухшие в растворителях, являющихся пластификаторами, представляют собой гели. Бойер [41 ] указывает, что чем больше растворяющая способность растворителя, измеряемая константой взаимодействия полимер— растворитель р, тем более он эффективен как пластификатор, действие которого проявляется в увеличении гибкости и снижении температуры точки хрупкости (пластификаторы типа масел действуют иначе). Здесь растворитель также вызывает разрыв связей полимер—полимер и таким образом уменьшает жесткость сетчатой структуры. Волокна, набухшие в воде или других растворите-,пих, можно рассматривать как ориентированные гели с очень большим числом поперечных связей, образованных кристаллитами. [c.327]

    При использовании в качестве усиливающих материалов стеклянного волокна в виде ровницы, матов, тканей в механизме упрочнения большую роль играет структура армирующего материала, его прочностные свойства и ряд технологических факторов [1]. Однако эффекты усиления и в этом случае не могут быть сведены к чисто механическим факторам без учета роли связующего. В таких системах связующее обеспечивает равномерность нагружения и одновременность работы всех волокон в армированном полимере, склеивает волокна и защищает их от воздействия внешней среды [6]. В этом случае первостепенное значение имеют процессы адгезионного взаимодействия полимера и наполнителя. Усиление при использовании однонаправленного армирующего материала может быть объяснено следующим образом [6]. В процессе приложения нагрузки волокна удлиняются и одновременно испытывают поперечное сжатие. При деформации в клеящей среде волокно при поперечном сжатии должно по всей поверхности оторваться от окружающей его пленки или растянуть ее. Таким образом, удлинение при растяжении вызывает в плоскости, перпендикулярной приложенной силе, растягивающее напряжение, препятствующее удлинению волокна. Это напряжение определяется адгезией смолы к поверхности и свойствами самой клеящей среды. Таким образом, при деформации для разрушения структуры необходимо преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию, которые тем больше, чем прочнее адгезионная связь и чем больше упругие свойства клеящей среды. При этом предполагается, что смола сильно упрочняется в тонких слоях. [c.274]

    ДЯ ИЗ специфических особенностей структуры этих соединений. Указанные авторы ис110льзова.ли для объяснения механизма пропесса вытягивания аналогию, существующую между деформацией полиамидов и пластической деформацией монокристаллов металлов. Процесс деформации монокристаллов был избран в качестве модели, так как при деформации монокристаллов наблюдаются явления, очень напоминающие процесс вытягивания через шейку [71]. Брозер, Гольдштейн и Крюгер, принимают, что при приложении нагрузки к невытянутой нити происходит поворот упорядоченных областей (мицелл) ) в направлении приложения нагрузки. Эти участки волокна, взаимодействие между которыми осуществляется за счет сравнительно слабых дисперсионных сил, перемещаются по отношению друг к другу в направлении приложения нагрузки. Вытягивание волокна начинается в том месте, где эти участки имеют наиболее благоприятное расположение для такого перемещения (образование шейки). Взаимное перемещение отдельных кристаллических областей передается на соседние кристаллиты посредством бахромы (аморфных областей полимера), соединяющей, как указывалось выше, отдельные упорядоченные области, в результате чего происходит соскальзывание одних кристаллитов относительно соседних. Легко можно представить, что этот процесс соскальзывания сопровождается поворотом отдельных кристаллитов в направлении оси волокна, что проявляется в высокой степени ориентации, фиксируемой на рентгенограмме вытянутого волокна. По данным Брозера, Гольдштейна и Крюгера, соскальзывание кристаллитов в процессе вытягивания волокна приводит по аналогии с деформацией монокристаллов к деформации самой кристаллической решетки, в результате чего происходит упрочение волокна по всему сечению. В этом случае происходит деформация мицеллярной сетки и прекращение процесса соскальзывания. Дальнейшая пластическая деформация полиамидного волокна без его разрыва становится невозможной. [c.435]

    При формовании волокна из подобных растворов (степень наполнения 5102 — более 50°/о от массы гидратцеллюлозы) получается оргаио-неорганическое волокно с хорошей равномерностью распределения компонентов по массе волокна. Нити при рассмотрении под электронным микроскопом достаточно однородны, что указывает иа хорошую совместимость компонентов. В процессе осаждения получается гибридное волокно, состоящее из целлюлозы и гидратированной полимерной формы 510г. Благодаря равномерному взаимному распределению компонентов и интенсивному взаимодействию полимеров, в результате вытягивания и спекания удается получить волокно с высокими механическими показателями. [c.336]

    Во всех случаях поливинилхлоридное волокно приобретает сиреневый цвет после 20—25 ч облучения, причем интенсивность окраски возрастает с увеличением продолжительности облучения, и после 10 суток волокно становится бордовым. При нагреве диметилформамидных растворов поливинилхлорида выше 80 °С растворы темнеют , а получаемое из них волокно имеет сиреневый оттенок. Эти изменения поливинилхлорида были объяснены взаимодействием полимера с продуктами гидролиза диметилформамида, в первую очередь с диметиламином. Можно предположить, что появление сиреневой окраски при облучении поливинилхлоридного волокна вызвано этими же причинами. [c.253]

    Величина внутренних напряжений значительно зависит от природы связей на границе стеклянное волокно - полимер и характера их распределения. Из данных о кинетике нарастания и релаксации внутренних напряжений при формировании покрытий на основе композиций из эпок-си- и олигоэфиракрилатов, армированных кордом из стеклянного волокна с другой природой поверхности, следует, что при использовании модификаторов, нарушающих специфическое взаимодействие полимера с поверхностью стеклянного волокна, внутренние напряжения понижаются в 2 раза. Характер зависимости внутренних напряжений от природы поверхности стеклянного волокна существенно изменяется при использовании того же связующего, но содержащего соединения с карбоксильными группами, способными химически взаимодействовать с винилтриэтоксисилановым модификатором поверхности стеклянного [c.176]

    Своеобразные явления наблюдаются при растяжении совместного расплава термодинамически несовместимых полимеров (например, [65]). Здесь существенную роль играет параметр взаимодействия полимер — полимер который для несовместимых пар всегда очень велик. Таким образом, доба вка второго полимера с меньшей молекулярной массой приводит в стационарном поле к дополнительному повышению жесткости высокомолекулярного полимера (к внутренней энергии этого полимера е надо добавить в формуле, аналогичной (1.13), член XAвVв, где Vв — объемная доля второго полимера, играющего роль растворителя). В этих условиях С. Л. Добрецов получал волокна с полистирольньш стерЖ1нем , обладающие разрывной прочностью в жидком азоте до 15 МПа. [c.81]

    Вид металла, способ его введения и вариации технологических режимов карбонизации волокон определяют структуру, элементный и фазовый состав формирующихся Ме-УВ, позволяют в широких пределах регулировать их свойства Металлосодержащие включения в составе Ме-УВ в виде оксидов, карбидов, высокодисперсных (3-20 нм) восстановленных металлов придают им высокие адсорбционно-каталитические свойства в ряде химических реакций, улучшают смачивание волокон различными видами связующих, влияют на характер взаимодействия реагирую1Ш1Х компонентов на границе раздела фаз волокнистый наполнитель-полимер. Структурно-активные фуппы Ме-УВ могут служить центрами кристаллизации полимеров, ориентировать макромолекулы в гюверхностном слое, изменяя структуру и свойства межфазного слоя и в целом всего армированного волокнами композита. [c.182]

    Очевидно, что экономичность процесса литья под давлением реакционноспособных олигомеров определяется скоростью протекания реакции полимеризации. Иными словами, этот процесс не может конкурировать с литьем под давлением термопластов, но может быть сравним с формованием методом заливки. Отсюда видно, что не все полимеризующиеся системы следует перерабатывать литьем под давлением. Со времени промышленного освоения процесса, т. е. с начала 70-х годов, наиболее часто используют линейные или пространственно-сшитые полиуретаны — продукты взаимодействия двух- или трехатомных спиртов и ди- или триизоцианатов. Используют также наполненные волокнами полиэфиры. В дальнейшем, когда процесс литья под давлением будет лучше изучен и начнут чаще применять форполимеры, можно будет надеяться на более широкое использование сшивающихся полимеров. Пока эта проблема находится в начальной стадии своего развития. [c.542]

    Так как термопластичные полимеры не содержат в своем составе реакционноспособных групп, дальнейшее повышение адгезии может быть достигнуто за счет прививок функциональных групп или использования сополимеров термопластичное — термореактивное связующее. Предварительная обработка поверхности углеродного волокна эпоксидными смолами позволяе увеличить прочность при сдвиге КМУП с полисульфоновым связующим. По-видимому, это связано с предотвращением взаимодействия функциональных групп на поверхности волокна с влагой. Последняя препятствует адгезии полисульфона к поверхности УВ. Улучшение указанного показателя достигнуто при покрытии поверхности волокна полиимидными и фенольными смолами, а также стиролом и малеиновым ангидридом [9-59]. Термообработка после покрытия улучшает адгезию и прочност1> при сдвиге за счет снижения внутренних напряжений в поверхностных слоях связующего. [c.557]


Библиография для Волокна взаимодействие с полимером: [c.196]   
Смотреть страницы где упоминается термин Волокна взаимодействие с полимером: [c.100]    [c.104]    [c.303]    [c.271]    [c.306]    [c.422]    [c.104]    [c.76]    [c.181]    [c.211]    [c.108]    [c.36]   
Конструкционные стеклопластики (1979) -- [ c.142 ]




ПОИСК







© 2024 chem21.info Реклама на сайте