Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфаты определение фосфора

    Способы определения некоторых из этих элементов были подробно рассмотрены раньше. Определение углерода сжиганием описано в 127. Для определения фосфора сталь или чугун растворяют в азотной кислоте и в полученном азотнокислом растворе осаждают фосфат-ион молибденовой жидкостью. [c.454]

    Для определения фосфора сплав меди растворяют в азотной кислоте и из полученного раствора осаждают фосфат-ион молибденовой жидкостью. В случае присутствия олова при растворении сплава в азотной кислоте образуется оловянная кислота, адсорбирующая из раствора фосфорную кислоту (см. 43). Тогда азотнокислый раствор сплава предварительно выпаривают несколько раз досуха, добавляя каждый раз соляную кислоту для удаления большей части олова в виде летучего хлорного олова, после чего осаждают фосфат-ион обычным способом. [c.456]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Аналитической формой при определении фосфора является фосфат-ион. Поэтому в процессе разложения анализируемого образца выполняют окисление различных форм существования фосфора в Р04 -ион, применяя сильные окислители азотную кислоту, царскую водку, перманганат калия. При действии неокисляющих соляной или серной кислот фосфор может теряться в виде летучего фосфина (фосфористого водорода). [c.231]

    Для определения фосфора предварительно отделяют мышьяк (а также примеси Sb, Sn и Hg) осаждением в кислой среде с помощью сульфида натрия, из фильтрата выделяют фосфор осаждением в виде фосфата магния-аммония, заканчивают определение комплексонометрическим титрованием магния или гравиметрическим методом, прокаливая осадок до нирофосфата магния. [c.203]

    Колориметрическое определение фосфора (можно определять и дру гими методами). Основано на реакции фосфатов с молибдатом аммония, в результате которой образуется комплексное соединение голубого цвета. Его восстанавливают до окрашенного в темно-синий цвет оксида молибдена, который называется молибденовой синью. [c.105]

    Для определения фосфора в природных фосфатах и фосфорных удобрениях, при содержании его от 3 до 8%, применяют титрование перхлоратом висмута [343]. [c.62]

    При определении фосфора в железных рудах фосфор предварительно выделяют, чаще всего в виде фосфоромолибдата аммония, с титриметрическим окончанием анализа. Навеску руды разлагают соляной кислотой [82]. При наличии титана, образующего труднорастворимые фосфаты, часть фосфора может остаться в нерастворимом остатке. В этом случае фосфор отделяют от Ti сплав- [c.104]


    Предложен метод определения фосфора в высокочистых окислах неодима и иттрия [3], основанный на получении фосфорномолибденовой сини взаимодействием фосфата и смеси Mo(VI) и Mo(V). [c.113]

    Определение фосфора в природных фосфатах и удобрениях [c.115]

    Определение содержания фосфора микрометодом. Для определения фосфора органическое вещество предварительно окисляют. При этом фосфор переходит в фосфат-ион, который определяют обычными методами неорганического анализа. Для определения фосфора применяют метод сжигания пробы в токе кислорода и микрометод. [c.209]

    Первая группа. На принципе подавления сигнала другого элемента (особенно щелочноземельных металлов) основаны косвенные методы определения фосфора. Эффект подавления фосфором абсорбционного сигнала объясняют образованием термостойких фосфатов, которые в пламени полностью не диссоциируют. Этим методом можно определять до 0,001% фосфора. [c.259]

    Отделение силиката от фосфата осуществляется путем выпаривания с хлорной кислотой до появления белых паров, при этом кремневая кислота обезвоживается и переходит в нерастворимую форму ее отфильтровывают или центрифугируют. Таким способом удаляли кремневую кислоту при фотометрическом определении фосфора в железной руде [9], известняке [8] и биологических объектах [17]. [c.11]

    Условия непосредственного осаждения фосфора в виде фосфата магния и аммония изложены в приведенном ниже ходе определения фосфора в фосфатной породе, не содержащей заметных количеств нерастворимых в кислоте соединений фосфора [c.791]

    При определении фосфора в чугунах и сталях после растворения навески в НЫОз и окислении образовавшейся фосфористой кислоты до фосфорной фосфат-ион осаждают в виде (ЫН4)зР04- 12МоОз. Отфильтровав осадок, его растворяют в аммиаке, после чего осаждают молибденовую кислоту в виде РЬМо04, по массе которого и вычисляют содержание фосфора. Вычислить фактор пересчета для этого определения. [c.191]

    Метод определения фосфора из золы углей был исследован институтом СЕРШАР в рамках разработки рекомендаций ISO [41 ]. Чтобы избежать влияния кремниевого ангидрида, после сжигания угля, согласно стандарту [25], образующуюся золу обрабатывают в горячем состоянии смесью азотной и фтористоводородной кислот. Кремниевый ангидрид улетучивается, другие составляющие находятся в растворенном состоянии и фосфат восстанавливается в форме осадка фосфоромолибденаммония, который затем анализируют. Метод является сложным, требующим особой внимательности при промывке полученного осадка. [c.51]

    Содержание фосфата в пробе рассчитывают по калибровочному графику. Для построения графика проводят определение фосфора в стандартном растворе КН2РО4, беря различные его количества в пределах чувствительности данного метода, а именно от 0,2 до 2 мкмоль (фосфата в пробе для колориметрирования (5 мл). Если в исследуемом растворе присутствуют лабильные фосфорные соединения, то поступают следующим образом. Определяют содержание фосфата в исходном безбелковом растворе айв том же растворе после осаждения из него неорганического фосфата магнезиальной смесью б (с. 38). Tio разности количества фосфата, найденного в пробах а—б), рассчитывают количество неорганического фосфата в исследуемом растворе. [c.35]

    Определение фосфора. По окончании минерализации содержимое колбы количественно переносят в мерную колбу на 25 мл или в мер- ную пробирку на 10 мл, добавляя небольшими порциями воду и тщательно ополаскивая колбу Кьельдаля. Первую порцию воды в колбу Кьельдаля следует добавить очень осторожно, так как при этом происходит сильное разогревание раствора и создаются условия для гидролиза пирофосфата, который может образоваться в процессе минерализации при длительном нагревании фосфата с концентрированной серной кислотой. В мерную колбу или пробирку, заполненную приблизительно наполовину разбавленным минерализатом, добавляют, 1—2 капли фенолфталеина и нейтрализуют кислоту сначала 5 н., а затем 0,5 н. раствором щелочи до слаборозовой окраски, доводят водой до метки и перемешивают. Из каждой колбы (пробирки) отбирают по две параллельные пробы и проводят определение неорганического фосфата (с. 33). При содержании в образце небольших количеств фосфата (до 0,1 мкмоль на пробу) удобно пользоваться методом, предложенным Бартлеттом (с. 48). [c.45]

    Определение по фосфору считается наиболее надежным методом оценки количества нуклеиновых кислот, так как его процентное содержание в наименьшей степени зависит от нуклеотидного состава для ДНК оно составляет 9,8—10,1%, для РНК —9,1—9,6 26. При определении фосфора нуклеиновых кислот в тканях необходимо предварительно удалить свободные нуклеотиды, неорганический фосфат, а также все фосфорсодержащие соединения ненуклеотидной природы, в частности липиды. [c.163]


    Основным преимуществом титриметрического метода является быстрота выполнения анализа. Метод неоднократно усовершенствовали [72, 158, 416, 428, 513, 1125] он дает удовлетворительные результаты и широко применяется до настоящего времени для определения концентраций фосфора выше 0,02%. Описано опре-. деление фосфора титриметрическим фосфоромолибдатным методом в сталях и чугунах 40, 74, 94, 104, 210, 249, 257, 263, 375, 376, 483, 550, 573, 599, 878, 885, 1057, 1099], рудах черных и цветных металлов [104, 225, 298, 301, 356, 379, 844], силикоцирконии, силикохроме, хромистом железняке [19], медных сплавах [263], фтористом, церии [1159], электролите для латунирования [244], фосфоритах [234], моющих средствах [670, 671], нефтепродуктах [228], вине [607]. Описано определение фосфорной кислоты в присутствии серной и хромовой кислот [631], ортофосфата в присутствии конденсированных фосфатов [509], фосфора в органических веществах [231, 997]. [c.32]

    При определении фосфора в конденсированных фосфатах, например в NajPaOie, их предварительно переводят в ортофосфаты осторожным кипячением с концентрированной НС1 [1226]. [c.34]

    При прямом титровании фосфатов раствором соли свинца [1172] при рн 2—3 в качестве индикатора применяют хлороформный раствор дитизона. Титруют до перехода зеленой окраски в фиолетовую. Метод применяют для определения фосфора в фосфатных удобрениях [1174]. В качестве индикатора применяют также эриох-ром черный Т (растворяют 0,2 г эриохрома черного Т в 5 мл С2Н5ОН и 15 мл триэтаНоламина) [950]. Титруют до появления красной окраски. Метод применяют для определения микроколичеств фосфора в органических веществах. Для определения микроколичеств фосфора применяют также титрование нитратом свинца в присутствии 2-азо-4-резорцина [1018]. Титруют до появления красного окрашивания. При содержании фосфора 20— 400 мкг средняя абсолютная ошибка определения составляет 2—3 мкг Р. При косвенном определении фосфатов с помощью нитрата свинца применяют окислительно-восстановительные индикаторы [732, 733]. Метод основан на осаждении РО/ в виде РЬз(Р04)2 нитратом свинца, избыток которого оттитровывают К4[Ге(СК)б1 в присутствии вариаминового синего и Кз[Ге(СК)б] в качестве индикатора. Титруют до перехода фиолетовой окраски в бледно-желтую. [c.37]

    Косвенный комплексонометрический метод определения фосфора с применением солей висмута основан на осаждении фосфора в виде В1Р04. Избыток висмута титруют комплексоном III в присутствии одного из индикаторов пирокатехинового фиолетового [187, 1034, 11131, К или пирогаллового красного [187] при pH < 1. Определению фосфата мешают С1 , 804 , Ге, Hg, ЗЬ, 1п, Оа, Ът и ТЬ [1034]. [c.39]

    Описан комплексонометрический метод определения фосфора с применением лантана в качестве осадителя. После отделения осадка LaP04 добавляют известное количество комплексона III, избыток которого титруют раствором La(N0g)3 при pH 5 в присутствии хромазурола S [353]. Метод применяют для определения фосфора в элементоорганических соединениях. По другому варианту к раствору фосфата добавляют известное количество La(N03)g, избыток которого титруют раствором комплексона III при pH 5 в присутствии индикатора ксиленолового оранжевого [801, 802]. Метод применяют для определения фосфора в морской воде [801]. [c.40]

    Описан метод определения фосфора в вольфрамовом ангидриде с использованием Мо [455, 457]. Навеску растворяют в горячем 20%-ном растворе КОН, фильтруют. Из фильтрата осаждают и отделяют фосфаты действием Са (N0g)2. Фосфаты на фильтре растворяют горячим раствором HNOg и вторично осаждают фосфат. Осадок промывают, растворяют в горячей HNOg, разбавляют, вводят радиоактивный молибден в виде К2 Мо04, экстрагируют ФМК изобутанолом, затем смесью изобутанола и хлороформа, и объединенном экстракте определяют активность Мо. [c.65]

    Яцимирским и др. [464] разработан метод определения фосфатов, сульфатов и молибдатов, основанный на радиометрическом титровании их раствором лутеохлорида, содержащего Со. Титрование проводят при pH 13. Определению мешают СгО , [Ре (СК) ] -, [Ге (СН) ] -, С О -, 30, -, СОд -, Вг", тартраты и цитраты. Относительная ошибка не превышает +2% при содержании фосфора 3—10 мг. Метод применен для определения фосфора в фосфорите. [c.66]

    Для определения фосфора в присутствии лабильных фосфатов применена экстракция фосфорномолибденовой кислоты бутанолом из 0,05 N H2SO4 [718]. [c.88]

    Обычный гравиметрический метод определения фосфора в природных фосфатах и удобрениях заключается в осаждении Р0 в кислом растворе в виде фосфоромолибдата аммония и переосаж-дении его в виде MgNH4P04 после прокаливания осадка его взвешивают в виде МдгРгО,. Метод является наиболее точным [И, 780]. [c.115]

    Предложен метод определения фосфора в природных фосфатах и суперфосфатных удобрениях, основанный на отделении фосфора осаждением в виде В1Р04 [187, 1138]. Анализ заканчивают комп-лексонометрическим методом [1138]. [c.116]

    При анализе природных фосфатов применяют титриметрический метод определения фосфора [11], заключающийся в осаждении РО4 - в кислом растворе молибдатом аммония в виде фосфоромолибдата аммония (КН4)зР04-12М00з-Н20 осадок отфильтровывают и растворяют в определенном объеме титрованного раствора щелочи. Избыток щелочи, не вошедший в реакцию, оттитровывают обратно раствором кислоты. [c.116]

    Для определения фосфора в нефтепродуктах органически связанный фосфор переводят в ионную форму быстрым сжиганием в О2 и сплавлением остатка с Naa Og , полученный фосфат определяют колориметрически в виде восстановленного фосфорномолибденового комплекса. Метод применим для определения содержаний фосфора от 0,003 до 4% [710, 715]. [c.158]

    Спектрофотометрический метод определения фосфора путем восстановления фосфорномолибденового комплекса Na2S20з и 1-амино-2-нафтол-4-сульфоновой кислотой может быть применен для определения РО4 в присутствии поли- и метафосфатов [274]. Метод применим также для определения РО4 в присутствии органических фосфатов. [c.165]

    Определение фосфора в виде Mg2P20 может быть осуществлено и без образования осадка фосфоромолибдата аммония. Осаждение проводят из раствора, содержащего фосфат-ионы, действием магнезиальной смеси далее поступают так же, как и при определении ионов магния (см. 17). [c.302]

    Разработаны различные экстракционно-фотометрические варианты определения фосфора в виде синего ФМК комплекса, возникающего после обработки экстракта восстановителем. Так, экстракция ФМК эфиром, обработка экстракта раствором двухлористого олова и фотометрирование ФМК сини применены для определения фосфора в присутствии больших количеств ванадпя [130]. Аналогичные методики, отличающиеся только восстановителем или природой экстрагента, описаны для определения фосфора в сталях, чугуне и железных рудах [131] металлическом хроме [132] природных водах [133] для одновременного определения фосфора и кремния [134] разделения и фотометрического оиределения фосфата, арсената и силиката [135, 136]. [c.240]

    Фотометрический метод определения фосфора в стали основан на восстановлении фосформолибденовой кислоты Ре(П) и МагЗОз до так называемого молибденового синего — ярко окрашенного синего комплекса, в котором молибден находится в более низкой степени окисления, чем в молибдате. Для этого после окисления до фосфата при помощи КМПО4 и восстановления полученного МпОа азотнокислый раствор нейтрализуют аммиаком, раствор слабо подкисляют НС1 и Ре(П1) восстанавливают НагЗОз при нагревании. Раствор дополнительно подкисляют НС1, охлаждают, чтобы предотвратить образование гетерополикислот, как в случае кремния и мышьяка, и к нему медленно по каплям прибавляют определенный объем раствора молибдата аммония. Полученный синий раствор переливают в мерную колбу, доливают до отметки и фотометрируют. Концентрацию фосфора находят по предварительно построенной калибровочной кривой. [c.477]

    Все химические данные, а также спектры поглощения указывают, что центральный атом определяет все свойства двенадцати окружающих его молибдат-ионов. Это видно из спектра поглощения желтая окраска обусловлена сдвигом всей полосы поглощения молибдата к длинноволновой части спектра. Далее, резко изменяется растворимость различных соединений так, фосфат аммония и молибдат аммония хорошо растворимы в воде, тогда как фосфоромолибдат аммония малорастворим. Существенно изменяется отношение к органическим растворителям. Изменяются даже такие характерные свойства, как отношение к восстановителям. На восстановлении ГПК до синих соединейий основан ряд методов определения фосфора, кремния и других центральных атомов свободный молибдат в этих же условиях почти не восстанавливается. Наконец, хорошо известен индивидуальный характер ГПК, т. е. зависимость свойств от центрального атома. Так кремнемолибденовая кислота значительно более устойчива к действию различных (оксалат, тартрат и др.) комплексонатов и кислот по сравнению с фосфорномолибденовой кислотой. Необходимо подчеркнуть, что образование кремнемолибденовой кислоты происходит п и меньшей кислотности, чем фосфорномолибденовой кислоты. Однако это связано не с устойчивостью кремнемолибденовой кислоты, а со свойствами кремневой кислоты, которая в кислых растворах сильно полимеризована (сМ.ниЖе). [c.259]

    Фосфор больше всего распространен в более основных изверженных и метаморфических породах и практически всегда в них содержится, хотя бы в следах. Он чаще встречается в породах, богатых известью и железом, чем в магнезиальных породах. За одним или двумя редкими исключениями, фосфор в природных неорганических соединениях находится в виде фосфатов, число которых очень велико. Он распространен главным образом в виде минерала апатита Gag (F, G1, 0Н)(Р04)з, но находится также в минералах ксенотимеДУ, Ег, Се)Р04 имонаците (Се, La, Nd, Рг)Р04-Ь ТЬз(Р04)4. В метеоритах встречается фосфид железа Фосфор является также важной составной частью живых организмов. Он присутствует в многочисленных рудах и продуктах металлургического производства. Методы точного определения фосфора имеют исключительно важное значение. [c.777]

    При анализе шести аликвотных частей стандартного раствора чистого двузамещенного фосфата аммония (без предварительного осаждения в виде фосфоромолибдата) было получено 0,2367 г и 0,2368 г MgaP207 после однократного осаждения, 0,2370 г и 0,2368 г после двукратного осаждения и 0,2366 г и 0,2368 г после трехкратного осаждения. Как показали результаты тщательного определения фосфора в 10 фильтратах и промывных водах от 12 осаждений, при каждом осаждении в среднем теряется менее 0,03 мг РгОб. Совпадение результатов, полученных однократным и двукратным осаждением, является исключением и объясняется тем, что сначала фосфор определялся в растворе двукратным осаждением, причем было вычислено количество магнезиальной смеси, необходимое для получения избытка в 2 мл, а однократное осаждение затем проводилось в растворах, содержапщх этот избыток осадителя, а также и то количество соляной кислоты, которое было израсходовано для растворения первого осадка при других определениях. [c.785]

    Селеновая кислота пе зшияет на определение фосфора двукратным осаждением в виде фосфора магния и аммония. Селенистая кислота несколько мешает, а мешающее влиязше теллуристой и теллуровой кислот очень велико. Однако ни одно из тих соединений не мешает, если перед первым осаждением фосфата в раствор ввести 1 г лимонной кислоты. [c.786]


Смотреть страницы где упоминается термин Фосфаты определение фосфора: [c.1092]    [c.39]    [c.57]    [c.59]    [c.59]    [c.122]    [c.127]    [c.476]    [c.790]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите



© 2025 chem21.info Реклама на сайте