Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Площадь поверхности жидких пен

    Площадь поверхности жидкого металла в ванне [c.288]

    Опасность статического электричества при электризации жидких углеводородов можно оценить, зная величину электрического заряда. При увеличении плотности электрического заряда напряженность поля может достигнуть такой величины, при которой произойдет электрический пробой. Величина электрического заряда, соответствующая пробою диэлектрика (нефтепродукта), будет предельной, больше которой не может быть плотность электрического заряда в трубопроводе. Предельная величина электрического заряда в трубопроводе прямо пропорциональна относительной диэлектрической проницаемости жидкости, пробивной напряженности электрического поля и обратно пропорциональна диаметру трубопровода. Увеличение диаметра трубы приводит к уменьшению предельной величины заряда статического электричества. При увеличении времени выдержки жидких углеводородов под напряжением предельная величина заряда уменьшается. С увеличением площади поверхности электродов предельная величина заряда жидкого диэлектрика снижается при постоянном напряжении. Предельная величина заряда очищенных диэлектриков сильно зависит от давления. При возрастании давления предельная величина заряда увеличивается. [c.151]


    Площадь одной капли 5 = 4я(0,005) = 0,314 10- см . Общая площадь поверхности 1 моль бензола в капельно-жидком состоянии [c.137]

    Гетерогенно-каталитические процессы более распространены в промышленности, чем процессы гомогенного катализа. Это обусловливается тем, что гетерогенные катализаторы более удобны в производстве, их легче отделять от газовой или жидкой фазы в непрерывно действующих реакторах. Активность гетерогенного катализатора существенно зависит от площади поверхности раздела фаз 5 катализатора и фазы, в которой находятся реагенты. Важной характеристикой катализатора является его удельная поверхность. Удельной поверхностью катализатора 5уд называется площадь поверхности раздела фаз, отнесенная к одному грамму или одному кубическому сантиметру катализатора  [c.634]

    На рис. 210 показана установка для молекулярной дистилляции с испарителем, снабженным спиральным ротором. Стеклянный спиральный ротор 8 испарителя вращается вокруг испарительной свечи 10. Такое конструктивное решение обеспечивает получение тонкослойной жидкой пленки толщиной около 0,1 мм и хорошую циркуляцию жидкости. Время пребывания жидкости в аппарате составляет всего несколько секунд. Установка имеет следующие технические данные условная производительность — ЮОО г/ч производительность — 250—2000 г/ч максимальная скорость испарения — 18 000 г/ч частота вращения ротора — около 40—90 об/мин площадь поверхности испарения — около 600 см максимальная температура дистилляции — 300 °С рабочее напряжение электросети 380—220 В потребляемая мощность — 2 кВт расход охлаждающей воды — около 350 л/ч. В качестве вымораживающих хладоагентов рекомендуется использовать жидкий воздух или азот, а в подходящих случаях смесь СОа — ацетон. [c.287]

    Решение. Определяем сначала общую площадь поверхности 1 моль бензола в капельно-жидком состоянии. Плотность находим в справочнике [М.] ез = 0,87 -10 кг/см . Объем 1 моль 78/0,8790 = = 88,7372 см /моль. Объем одной капли [c.146]

    Для абсорбции из смеси газов одного компонента, химически реагирующего с абсорбентом, необходимо иметь площадь поверхности 3000 м . Известны также следующие данные вязкость абсорбента Цж = Ю" Па-с плотность газовой смеси Рг = 0,65 кг/м плотность жидкого абсорбента р = 1000 кг/м массовый расход абсорбента L= 16 000 кг/ч объемный расход газа (при рабочих температуре и давлении) G = 6500 м /ч. Рассчитать размеры колонны. [c.222]

    Согласно модели Зенера — Бауэра, иллюстрируемой рис. 3, теплота передается только через жидкую фазу с площадью поверхности тора — У 1—ф путем молекуляр- [c.427]


    Значительная интенсификация коррозионных процессов в зоне раздела связана с тем, что поверхность металла, отделенная от углеводородной фазы слоем электролита, находится в очень благоприятном для подвода агрессивного компонента положении. В рассматриваемом случае агрессивным компонентом является кислород, растворимость которого в углеводородной фазе в несколько раз больше, чем в воде. Гидрофилизация поверхности металла на границе раздела фаз способствует втягиванию электролита по металлической поверхности из объема водной фазы в область, контактирующую с углеводородом. Поднимающийся вверх под действием капиллярных сил электролит оттесняет от поверхности металла углеводородную жидкую фазу, в результате чего под неполярной фазой возникает тонкий слой электролита. При этом граница раздела двух жидкостей, около которой развивается наиболее интенсивное разрущение металла, постепенно перемешается по стенке труб и увеличивает наиболее быстро разрушаемую площадь поверхности. [c.159]

    Частицы (молекулы и ионы) во внутренних слоях вещества испытывают в среднем одинаковое со стороны окружающих частиц притяжение (рис. 11.1). Частицы же у поверхности подвергаются неодинаковому притяжению со стороны как внутренних слоев вещества, так и граничащей с ним среды. Так как межмолекулярное взаимодействие в среде сильнее, то равнодействующая сила притяжения будет направлена нормально к поверхности в сторону среды, т. е. в сторону жидкой фазы, если это жидкость и газ. При увеличении площади поверхностей раздела путем дробления мы выводим частицы из [c.37]

    Отсюда следует, что изменение температуры элемента движущейся жидкой среды определяется суммой подведенного к элементу или отведенного от него тепла и интенсивности диссипативного разогрева внутри элемента. Из практических соображений в смесительных устройствах обычно поддерживают относительно невысокую температуру, чтобы избежать перегрева полимерного материала. С другой стороны, как показано в разд. 11.6, для диспергирования в определенных зонах внутри смесителя необходимо поддерживать высокие напряжения сдвига. Из уравнения (11.3-18) видно, что для выполнения этого требования надо обеспечить интенсивный отвод тепла при смешении. Для полимерных систем, характеризующихся низкой теплопроводностью, это не простая задача. Конструкция смесителя должна обеспечивать не только тщательный контроль температуры поверхности, но также и максимально возможное отношение площади поверхности смесителя к его объему. [c.382]

    Название статические смесители связано с тем, что в устройствах этого типа отсутствуют какие-либо движущиеся части. Однако конструктивные особенности смесителя позволяют так перестраивать поле скоростей и изменять направление линий тока, что площадь поверхности раздела существенно увеличивается и жидкая смесь все время проходит через каждый из повторяющихся элементов статического смесителя. Хотя для каждого типа статических смесителей характерна своя картина смешения, тем не менее общим является то, что увеличение поверхности раздела между компонентами смеси достигается двумя способами за счет сдвигового или экстенсивного течения и за счет расщепления и перестраивания потоков жидкости. В обоих случаях необходим перепад давления. Это и определяет число элементов смешения в статическом смесителе, а следовательно, и качество смешения. [c.395]

    Адсорбционные явления, происходящие на поверхности раздела между твердой, жидкой и газообразной фазами, оказывают большое влияние на кинетику гетерогенных реакций. Прежде всего наблюдаются отклонения от порядка реакции соответствующей гомогенной реакции (получают порядок реакции от О до 1). Скорость реакции в таких случаях зависит от площади поверхности раздела. Ввиду важности явлений адсорбции для гетерогенных реакций рассмотрим сначала более подробно адсорбционное равновесие. [c.187]

    Экспериментальное определение поверхностной работы возможно только на жидких электродах, так как лишь на них можно изменять площадь поверхности раздела фаз в равновесных условиях и измерять затраченную на это работу. На твердых металлах также можно изменять площадь поверхности раздела, например, разрушая погруженный в раствор электрод при помощи ультразвука. Однако затраченная при этом работа не будет равна а, так как процесс увеличения площади поверхности металла осуществляется в неравновесных условиях. iQ Форма стацио- [c.33]

    Электрокапиллярные явления отражают зависимость пограничного натяжения на границе электрод — раствор от потенциала электрода и состава раствора. Для жидких металлов (ртуть, галлий, амальгамы, расплавы) пограничное натяжение у совпадает с обратимой поверхностной работой а и может быть экспериментально измерено, так как жидкая граница раздела допускает изменение ее поверхности в обратимых условиях (достаточно, например, наклонить стаканчик со ртутью, покрытой раствором, чтобы изменилась поверхность ртутного электрода). С другой стороны, даже небольшое упругое растяжение твердого электрода приводит к увеличению расстояния между атомами металла на поверхности, а следовательно, растянутая поверхность не идентична первоначальной и имеет иное значение о. Если при упругом растяжении площадь поверхности увеличилась на с15, то затраченная на растяжение работа равна [c.171]


    Скорость обратного процесса — конденсации конд ПрОПОр циональна площади поверхности жидкости 5, доступной для перехода молекул из газовой фазы в жидкую, и числу молекул, в некотором объеме газовой фазы над поверхностью жидкости, т. е. пропорциональна парциальному давлению пара жидкости Ра  [c.96]

    Растворение твердых веществ в жидкостях является сложным процессом и состоит из двух стадий. Первая стадия есть переход молекул или ионов, образующих кристаллическую решетку растворяемого вещества, из твердой фазы в жидкий раствор. Молекулы или ионы, находящиеся на поверхности кристалла, обладают наибольшей кинетической энергией, и амплитуда их колебаний около положения равновесия является наибольшей удалившись от соседних частиц кристаллической решетки, они приближаются к ближайшим молекулам растворителя. При этом силы, удерживающие данную частицу в кристаллической решетке, могут настолько уменьшиться, а силы взаимодействия этой частицы с молекулами растворителя настолько возрастают, что она покидает кристаллическую решетку и связывается с молекулами растворителя (сольватируется). Число частиц, переходящих в раствор с единицы площади поверхности кристалла в единицу времени, определяется частицами, обладающими достаточно большой для такого перехода кинетической энергией, и при постоянной температуре является постоянным. Скорость этого процесса очень велика и количество частиц растворенного вещества, находящихся в растворе вблизи поверхности кристалла, будет быстро увеличиваться. Частицы растворенного вещества в растворе сталкиваются с молекулами растворителя, направление движения при каждом столкновении меняется и движение их приобретает хаотический характер. [c.405]

    Поверхность твердых тел, как и жидкостей, обладает избыточной энергией Гиббса. Однако твердые тела в отличие от жидкостей не могут изменять площадь поверхности путем самопроизвольного изменения формы. Поэтому тенденция к уменьшению избыточной поверхностной энергии Гиббса в системах, где твердая фаза находится в контакте с газом или жидким раствором, проявляется глав- [c.314]

    Многие химические процессы, имеющие большое значение в технике, относятся к числу гетерогенных реакций горение твердого и жидкого топлива (например, С + Ог = СОг), химическая и электрохимическая коррозия металлов и сплавов (например, Zn + + Va Ог-> ZnO) и т. п. Реакция в гетерогенной системе осуществляется на поверхности раздела между фазами. Чем больше эта поверхность, тем больше вероятность столкновения молекул реагирующих веществ, находящихся в разных фазах. Поэтому скорость гетерогенного химического взаимодействия при постоянной температуре зависит не только от концентрации газообразных (или жидких) реагентов, но и от площади поверхности раздела между фазами 5. [c.118]

    Реакция в гетерогенной системе происходит на поверхности раздела между фазами, вследствие чего ее скорость при постоянной температуре зависит не только от концентрации газообразных или жидких компонентов, но и от площади поверхности раздела между фазами. [c.22]

    Рассмотрим каплю жидкости на поверхности твердого тела в условиях равновесия (рис. Рис. 8.5. Капля жид-8.5). Поверхностная энергия твердого тела, ости иа поверхности стремясь к уменьшению, растягивает каплю твердого тела по поверхности. Эта энергия выражается поверхностным натяжением твердого тела на границе с газом оз.ь Межфазная энергия оа.з стремится, наоборот, сжать каплю — уменьшить свою поверхностную энергию за счет уменьшения площади поверхности. Против растекания действуют когезионные силы внутри капли. Эта составляющая направлена от границы между твердой, жидкой и газообразной фазами по касательной к сферической поверхности капли и равна 02,1. Угол 0, внутри которого расположена жидкая фаза, называют краевым углом смачивания. Все составляющие можно выразить с помощью векторов сил. Равновесие описывается соотношением [c.289]

    Мощность печи для данного отношения tnoJtnл определяется как произведение табличной удельной мощности на площадь поверхности жидкой ванны, т. е. на [c.249]

    У полностью погруженного образца из низкоуглеродистой стали анодные и катодные участки не всегда разделены. Все участки поверхности в процессе коррозии становятся то анодными, то катодными, и вся поЕерхность покрывается продуктами коррозии, которые образуются не на поверхности. Электрохимическая природа коррозии полностью погруженных образцов доказана экспериментами как по контактной коррозии, так и по коррозии при наложении тока. Скорость коррозии часто определяется диффузией кислорода к катодным участкам. В этом случае общая потеря веса образцов пропорциональна площади поверхности жидкой фазы. [c.61]

    К сожалению, физическая интерпретация величины поверхности раздела фаз, используемой в расчетах массопереноса, порождает ряд вопросов. Когда сопротивление массопереносу сосредоточено в основном в жидкой фазе, имеет большое значение функция распределения возраста поверхностных элементов [1]. При рассмотрении физической абсорбции поверхностные элементы, для которух возраст велик, вносят очень мало в массопередач у, та№им образом, при определении средней площади поверхности раздела явно неправомерно представлять последнюю как среднюю геометрическую площадь поверхности раздела газ — жидкость. [c.90]

    Гипс Са304 2НаО растворяется в воде при 298 К. Скорость перемешивания постоянная. Объем жидкой фазы 1 л. Площадь поверхности 5 неизменна и равна 31,55 см. Коэффициент диффузии [c.412]

    Весьма показательно, что в подобных зависимостях совершенно игнорируется влияние таких факторов, как поверхностная энергия жидких смесей, стремление жидкостей уменьшить свою поверхность (особенно при пленочном течении отрицательных жидких смесей), а также влияние краевого угла смачивания, образуюш,егося при контакте жидкости с поверхностью твердого тела (рис. 27). Возможно, что пренебрежение указанными факторами и является причиной значительных расхождений между вычисленными и экспериментальными величинами. Комбинируя уравнения Дюпре и Янга, приходим к следуюш,ему простому соотношению для определения работы, затрачиваемой на образование единицы площади поверхности раздела фаз (или поверхностной энергии)  [c.47]

    Особенности свойств поверхности жидких и твердых тел. Как известно, на новерхносп жидких и твердых тел молекулы вещества обладают избытком энергии ио сравнению с молекулами, находящимися вР1утри тел. Этот избыток энергии в поверхностном слое, отнесенный к единице площади поверхности, называется поверхностным натяжением. Иа поверхности твердых тел это проявляется в большей мере, чем жидких. [c.75]

    Еще одним из факторов дезактивации является закупорка макропор катализатора жидкой серой. Катализатор, как правило, работает в температурных условиях конденсации серы, причем при этой температуре сера имеет довольно значительную вязкость. Как известно, для достижения термодинамического равновесия реакции Клауса на каталитической ступени ее проводят при низких температурах. Обычно в первом реак1 оре поддерживают температуру около 620 К для гидролиза OS и S . Второй реактор работает при температуре, несколько превышающей точку росы паров серы, но сера может конденсироваться в порах катал[изатора и при такой температуре (капиллярная конденсация). Эта конденсация серы приводит к уменьшению степени превращения H S и SOj, так как блокируется некоторая площадь поверхности катализатора, а сама жидкая сера проявляет малую каталитическую активность [6]. [c.155]

    Чаще всего самый маленький коэффициент теплоотдачи реализуется на инутренней стороне трубы, но использование развитой поверхности пропагандируется в совсем других ситуациях (например, при охлаждении жидким металлом, текущим через трубы). Другое 11риме-нение оребренных труб дано в конструкции высокоэффективных с мелкими слоями теплообменников для регенерации теплоты отработавших газов [20]. В этом последнем примере области между ребрами ведут себя как раздельные разбавленные слои и пузыри сохраняют неизменный размер из-за близости расположения ребер, которое может составлять 3—5 мм, или в 15—20 раз превышать диаметр частиц. В таких объемах расширение слоя может достигать 400 ( нрн все еще высоких коэффициентах теплоотдачи от слоя к стенке вследствие очень коротких вре.мен пребывания частиц у теплоотдающей поверхности. Отнесенные к площади внешней поверхности трубы коэффициенты теплоотдачи равны примерно 4 кВт/(м -К). Из-за того что частицы в слое имеют очень большую площадь поверхности, через которую передают теплоту газу, может быть достигнута очень хорошая регенерация теплоты от газа необходимо только использовать мелкие слои. Таки.м образом, эти конструкции могут действовать без повышения гютерь давления, т. е. без недостатка, присущего системам с более глубоким погружением в слой. Обычно такая установка может действовать при полных потерях давления около 50 мм по водяному манометру при использовании вдува от вытяжных вентиляторов для обеспечения течения горячего ожижающего газа через слой. Максимальные коэффициенты теплоотдачи, отнесенные к полной площади, выражаются зависимостью, предложенной в [21], [c.450]

    В поперечнике. На рис. 13 приведена фотография газового пузыря, выделяющегося из жидкой сопочной брекчии грязевого вулкана Дашгиль. Этот пузырь имеет диаметр около м ш как видно вот-вот лопнет. Из жерла грязевого вулкана выделяются один за другим такие пузыри газа. Когда автор этой книги наблюдал за вулканом Дашгиль, то на большой площади жидкой грязи (жерло вулкана) выделялось одновременно но нескольку таких газовых пузырей. На некоторых грязевых вулканах поверхность жидкой грязи кипит от выделяющегося газа. Количество газа бывает различным и с течением времени меняется — то увеличивается, то уменьшается, иногда выделения совсем прекращаются. [c.43]

    Более простая система разработана Филлипсом и Трекслером [20]. Она пригодна для большинства исследований и лишена недостатков, связанных с введением бентонита, который может вызвать загрязнение питательного расвора. По этому методу навеску битума растворяют в минимально возможном объеме бензола с тем, чтобы получить жидкий раствор, который можно набрать пипеткой. Определенную порцию раствора битума вводят непосредственно жидкую питательную среду, где он образует слой над водной фазой. В процессе стерилизации в автоклаве бензол испаряется, оставляя тонкую пленку битума на поверхности жидкой питательной среды. Этот тонкий слой создает достаточную площадь поверхности для большинства организмов. Концентрация битума, вводимого в среду, обычно 1 % и ниже. [c.179]

    Рассмотрим конкретный практический пример ламинарного смешения. Жидкий компонент вводят в смеситель, содержащий расплав полимера в форме капель микроскопических размеров. Мы утверждаем, что то, что произойдет с каплями в потоке жидкости в начальной стадии смешения, не зависит от смешиваемости компонентов. Это объясняется тем, что при быстром растворении образуется тонкий (в лучшем случае) пограничный слой. Постепенно капли де формируются, подвергаясь воздействию локальных напряжений.. Поле напряжений неоднородно, поскольку компоненты смеси имеют различные реологические свойства (как вязкость, так и эластичность). Влияние поверхностного натяжения несущественно (соответственно несущественно и наличие или отсутствие четких границ раздела), Вязкие силы превышают поверхностное натяжение По мере деформации капель и увеличения площади поверхности раздела степень смешиваемости двух компонентов начинает играть все возрастающую роль. Для смешиваемых систем внутренняя диффузия способствует достижению смешения на молекулярном уровне, а в случае несме-шиваемых систем — вводимый компонент дробится на мелкие домены. Эти домены вследствие вязкого течения и под воздействием сил поверхностного натяжения достигают состояния, характеризуемого постоянной величиной деформации. Таким образом, для несме-шиваемых систем смешение начинается по механизму экстенсивного смешения и постепенно переходит в гомогенизацию. Морфология доменов, образующихся как в смесях, так и в сополимерах, является предметом интенсивных исследований [19]. [c.388]

    При адсорбции на жидкой поверхности Ме определяется площадью поверхности, занятой одной молекулой. Если молекулы анизомет-ричны (например, имеют сильно удлиненную форму), что вообще типично для поверхностно-активных веществ, то занимаел4ая одной молекулой площадь зависит от положения, в котором она находится на поверхности. При низкой концентрации молекулы обычно лежат на поверхности, но с повышением концентрации они постепенно переходят в более экономичное при большом заполнении слоя стоячее положение. Это означает, что М.-, растет с увеличением заполнения 0. [c.109]

    Гпббс подошел к представлению об эластичности пенных пленок следующим образом. Особенность тонких жидких пленок состоит в том, что их толщина много меньше линейных размеров, определяющих площадь поверхности пленок. Благодаря этому можно считать, что при деформациях (локальных растяжениях и сжатиях) распределение компонентов между поверхностью и объемом пленки в направлении, перпендикулярном ее поверхности, всегда равновесно, тогда как между отдельными участками пленки, расположенными на достаточном удалении друг от друга, равновесие не успевает установиться. Такие участки могут рассматриваться как замкнутые, объем и общее количество компонентов в которых остаются неизменными при деформации. Если некоторый участок пленки (Гиббс называет его элементом пленки) будет растянут, то его поверхность О увеличится, а толщина /г уменьшится, [c.231]

    Из баллона 1 через оедуктоо 2 и вентиль тонкой регулировки 3 подается газ-носитель Не, N2, Из). Давление газа измеряют манометром 4. Поток газа проходит через испаритель 5, в который импульсом вводится точное количество жидкого адсорбата (бензол, н-геп-тан, циклогексан). Жидкая проба испаряется и потоком газа-носителя вносится в хроматографическую колонку 6, заполненную адсорбентом, площадь поверхности которого требуется определить. В хроматографической колонке происходит адсорбция вещества. Через некоторое время, зависящее от величины и характера адсорбции, адсорбат выходит из колонки вместе с газом-носителем. Концентрация его в газе определяется с помощью детектора 7. [c.433]

    Как известно, степень заполнения подложки ОН-группами проявляется в той или иной степени гидрофильности поверхностн образца. Химический контроль степени гидроксилирования по-верхности пластин кремния или кварца ввиду ее малой величины весьма затруднителен, поэтому ее определяют по изменению краевого угла смачивания поверхности жидкой водой, Равновесный краевой угол представляет одну из важнейших характеристик смачивания. Величина этого угла может бьт, оценена исходя из известного положения термодинамики о том, что в состоянии равновесия свободная энергия системы минимальна, Энергетическими характеристиками поверхности твердого тела в контакте с жидкостью являются удельная свободная поверхностная энергия н поверхностное натяжение а. Для определения условия равновесия фаз при смачивании рассчитьь вают работу, связанную с изменением площадей контакта. Зависимость равновесного краевого угла 0о от поверхностного натяжения на границе раздела трех фаз твердой подложки, жидкой капли и окружающей их газовой атмосферы, выражается уравнением [c.79]


Смотреть страницы где упоминается термин Площадь поверхности жидких пен: [c.132]    [c.314]    [c.145]    [c.202]    [c.162]    [c.183]    [c.33]    [c.33]    [c.387]   
Химия и технология газонаполненных высокополимеров (1980) -- [ c.28 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Площадь



© 2025 chem21.info Реклама на сайте