Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий очистка

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]


    В книге рассмотрены вопросы производства инертных газов при комплексном разделении воздуха, природных и продувочных газов методами низкотемпературной ректификации н адсорбции. Описаны схемы установок и способы получения аргона, криптона, ксенона, неона и гелия, а также химические и физические методы глубокой очистки этих газов от примесей. Даны основы расчета аппаратов и установок для производства всех инертных газов. [c.183]

    Газ-носитель и адсорбат из баллонов 1, 2 поступают в фильтры со стеклянной ватой 3 для очистки от следов масла, проходят реометры 4 и очистительную систему. При использовании гелия высокой чистоты (99,9% Не) и аргона сорта А (99,99% Аг) можно обойтись без предварительной очистки, оставив только ловушку 8 для вымораживания влаги из газовой смеси. Азот и водород необходимо затем очищать от кислорода на хромоникелевом катализаторе 5 и осушать в колонке 6. Очищенные газы смешивают в трехходовом кране 7 и далее смесь последовательно проходит сравнительную ячейку катарометра 9, приспособление для ввода пробы в систему при калибровке шесть адсорберов 13, отделяемых друг от друга четырехходовыми кранами 12, измерительную ячейку катарометра 14 и измеритель скорости адсорбции 15. [c.299]

    Мы уже отмечали, что воздухоплавание предъявляет сравнительно высокие требования к чистоте гелия, значительные примеси азота воздуха уменьшают подъемную силу гелия. Между тем через оболочку воздушного корабля проникает внутрь воздух, а гелий частично улетучивается в атмосферу. Упомянутое обстоятельство требует периодического рафинирования гелия — очистки его от примесей. Процесс этот сравнительно прост и его следует производить тогда, когда содержание гелия с 99—99,57о дойдет" до крайне допустимого минимума 85—90%- [c.131]

    Технико-экономические показатели установок для извлечения гелия из природных или попутных нефтяных газов определяются в основном составом исходного газа, содержанием в нем гелия и выбором холодильного цикла для покрытия потерь холода. Общий баланс холодопроизводительности установки определяется глубиной очистки получаемого гелия и долей природного газа и тяжелых углеводородов, выводимых в жидком виде. На холодопроизводительность установки и температурный режим процесса извлечения гелия влияет также содержание азота в исходном газе. Если установка предназначена только для выделения гелия из природного газа, то потребность в холоде может быть покрыта путем использования холодильного цикла с однократным дросселированием исходного природного газа с предварительным охлаждением (аммиачным, метановым или пропановым). При этом перепад давлений природного газа на входе в установку и на выходе из нее обычно не превышает 0,8-1,5 МПа. [c.160]


    Растворение полимеров сопровождается явлениями, отличными от растворения низкомолекулярных веществ. Сначала происходит набухание полимера, а затем набухший полимер переходит в раствор, Набухание полимера протекает медленно и может быть ускорено при легком встряхивании. По окончании растворения полимера определяют полноту растворения. Растворы полимеров могут содержать некоторые механические примеси и нерастворимый остаток полимера (гель). Очистка растворов проводится или центрифугированием при умеренных скоростях, или фильтрованием. Во избежание улетучивания растворителей в процессе фильтрования в лабораторных условиях рекомендуется использовать прибор, изображенный на рис. 14. [c.139]

    Промышленные процессы получения чистого гелия включают обычно несколько стадий предварительную очистку и осушку природного газа, выделение гелия из природного газа (получение сырого гелия или концентрата гелия), очистку сырого гелия и, наконец, получение, чистого гелия. [c.172]

    Процесс рекомендуется применять при необходимости очистки газа от большого количества разнообразных примесей, и особенно при низкотемпературных процессах переработки газа, например при извлечении гелия. [c.180]

    Следует отметить, что комбинация мембранного метода получения гелиевого концентрата [75—95% (об.) Не] с криогенным (получение чистого гелия) позволит примерно на 20% снизить себестоимость товарного продукта [71, 116. В случае, если природный или нефтяной газы наряду с гелием содержат диоксид углерода, целесообразной представляется мембранная очистка этих газов от СО2 с последующим извлечением гелия из потока пермеата. [c.326]

    В качестве реагента применяли 7—9 %-ный гель полиакриламида известковой очистки с молекулярной массой 3,7 10 и степенью гидролиза 9,6 %. Средняя концентрация полимерного раствора, поступающего в пласт, в период пробной подачи в объеме около 5000 составляла 0,1 %, а в период крупномасштабной закачки — 0,015 % [c.127]

    Адсорбенты типа боксита, которые содержат примеси железа, нельзя применять для очистки кислых газов. Адсорбенты других типов применяются для этих целей, но не всегда успешно. Наилучшими осушителями кислых газов являются молекулярные сита. Однако, если содержание в газе кислых компонентов мало, то применение молекулярных сит может оказаться невыгодным из-за их высокой стоимости. Гели не реагируют с сероводородом, но сера, может блокировать их поверхность, если концентрация сероводорода или условия процесса способствуют образованию элементарной серы. Эту серу невозможно удалить из адсорбента при обычной регенерации. В общем, трудно четко раз- [c.255]

    Ионообменная очистка основана на способности ионообменных смол (ионитов) удерживать те загрязнения, которые в растворенном состоянии диссоциируют на ионы. Иониты получают путем полимеризации и поликонденсации органических веществ они представляют собой твердые гигроскопичные гели, не растворимые в воде и углеводородах. В высокомолекулярной пространственной решетке ионита закреплены фиксированные ионы. Заряды этих ионов компенсируются зарядами противоположного знака, принадлежащими подвижным ионам (противоионам), расположенным в ячейках решетки и способным к обмену с ионами раствора электролита. Иониты, содержащие активные кислотные группы и подвижные катионы, способные к обмену, называются катионитами, а иониты с активными основными группами и подвижными анионами — анионитами. [c.125]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]


    Установка, о которой идет речь, — сложное сооружение. Газ, поступающий по трубопроводу из Нидерландов, содержит 14 масс. % азота. Сначала он подается в секцию очистки от СО2 затем с помощью триэтиленгликоля газ тщательно осушается, и из него выводятся высококипящие фракции при охлаждении жидким аммиаком и первичном фракционировании в низкотемпературном сепараторе низкого давления. Полученный на этой стадии газ состоит из метана, этана, азота и гелия, которые впоследствии в процессе низкотемпературного фракционирования разделяются на три потока. Считается, что все энергетические потребности работающей установки полностью удовлетворяются за счет теплообмена между входящими и выходящими потоками с минимальными внутренними потерями на охлаждение при внезапном расширении. [c.33]

    Криогенные методы лежат в основе процесса получения гелия, реализованного на отечественных предприятиях. Производство гелия осуществляется в два этапа получение гелиевого концентрата (из очищенного от кислых компонентов и осушенного до точки росы минус 70 °С природного газа) и тонкая очистка гелия. [c.160]

    ТОНКАЯ ОЧИСТКА ГЕЛИЯ [c.167]

    Технологическую схему установки почти во всех случаях можно разделить на три основных узла предварительного охлаждения, конденсации газа или обогащения его гелием, тонкой очистки гелия. [c.161]

    При проектировании противоточных конденсаторов выбор скорости газа может лимитироваться скоростью захлебывания. Оптимальное давление при очистке гелия от азота методом конденсации лежит в пределах 9-12 МПа. При давлении 10 МПа и температуре кипящего под атмосферным давлением азота может быть достигнута максимальная чистота гелия, равная 98,5 % [9]. Дальнейшие повышение давления, например до 18 МПа, и понижение температуры вплоть до температуры тройной точки азота приводит к увеличению концентрации гелия менее чем на 0,5 %. Таким образом, при разделении [c.163]

    Гелиевый концентрат - основной продукт установки - направляется на установку тонкой очистки гелия. [c.167]

Рис. 42. Схема отделения У-11, У-22 тонкой очистки гелия на ОГЗ Рис. 42. <a href="/info/125849">Схема отделения</a> У-11, У-22 <a href="/info/1865428">тонкой очистки</a> гелия на ОГЗ
    На рис. 42 показана технологическая схема установки тонкой очистки гелия. [c.167]

    Конденсация пара из парогазовой смеси имеет широкое распространение в промышленности. В химической технологии эти процессы используются, ндпример, для конденсации аммиака из азотоводородной смеси после синтеза, для фракционированной конденсации углеводородных смесей из газов пиролиза нефтяного сырья в производствах низших олефинов (этилена, пропилена), для конденсации органических продуктов в присутствии неконденсирующихся газов, для конденсации азота из азотогелиевой смеси в установках очистки гелия от примеси азота и во многих других производствах. В холодильной технике конденсация паров хладагентов часто происходит в присутствии небольших количеств не-конденсирующегося воздуха. То же имеет место и при конденсации отработанного водяного пара в паросиловых установках, когда водяной пар содержит примесь воздуха. [c.148]

    Подогретый поток гелиевого концентрата среднего давления поступает в буферную емкость Е-16. Из буферной емкости гелий среднего давления с давлением 1,2-1,б МПа и температурой не ниже минус 30 °С подается в узел очистки от водорода и метана с помощью окисления кислородом воздуха, подмешиваемым к этому потоку, на алюмоплатиновом катализаторе. [c.167]

    Очистка Осушка от масла на на цеолитах Гелий 20 силикагеле NaЛ марок V [c.168]

    В отличие от схем, где удаление основного количества азота производилось при криогенных температурах, в схеме, показанной на рис. 52, в, этот процесс осуществляется при обычных температурах. Для этой цели используется изотермическая короткоцикловая адсорбция, при которой процесс адсорбции в аппаратах 4 происходит при высоком давлении, а процесс десорбции — при низком. Процесс состоит из фазы очистки, осуществляемой при среднем давлении, сброса давления и повторного наддува адсорберов чистым гелием. Очистка смеси от водорода, влаги, микропримесей азота и других компонентов производится так же, как и в рассмотренных выше схемах, при прохождении смеси через аппараты 1-3, 5-6. [c.156]

    В настоящей работе исследовано влияние растворителя на К реакции (1). В качестве растворителей взяты анизол, метилаль, этилацетат, нитрометан, ацетонитрил и диоксан. лг-Фенилендиамин ч. и бензоил-хлорид ч. очищали перегоцкой под вакуумом в атмосфере гелия. Очистку растворителей марки ч. (анизола, метилаля, этилацетата, нитрометана, ацетонитрила и диоксана) производили по методикам, указанным в работах [4]. [c.39]

    Газ-носитель гелий и газ-адсорбат аргоы проходят систему дозировки, состоящую из вентилей тонкой регулировки 4 и реометров 6, и систему очистки и осушки с никельхромовым катализатором 7 и окисью алюминия 8. Затем через кран-смеситель 9 они поступают в ловушку 10, помещенную в сосуд Дьюара с жидким азотом И, для освобождения от следов влаги. Далее смесь проходит через сравнительную ячейку катаромет-ра 12 и подается в адсорберы 16, в которые засыпают навески катализаторов. Адсорберы соединяются между собой последовательно через краны-байпасы 15. После адсорбции смесь газов с изменившимся составом подается в измерительную ячейку катарометра 17 и затем сбрасывается через контрольный объемный счетчик расхода с мыльной пленкой 18. [c.83]

    Таким образом, на установке используются три газа— гелий, кислород и водород. Для подачи их в адсорбер с катализатором имеются регулирующие редукторы 2, вентили 3, фильтры 4 и реометры 5. Контактирующие с катализатором газы должны быть хорошо очищены и осушены. Для этого газ пропускают через поглотители колонки с никельхромовым катализатором 6 для до-жига кислорода в потоках гелия и водорода, адсорберы с окисью алюминия 7 и молекулярными ситами 8 для улавливания воды, колонку с платиновым катализатором 9 для очистки водорода от кислорода, адсорберы с аскаритом 10 и пятиокисью фосфора 11. Для периодической регенерации катализаторов и адсорбентов колонки 6—9 имеют электрический обогрев. На линии подачи газа носителя перед адсорбером установлены ртутный манометр 12 и четырехходовой кран 13. [c.91]

    Кислотность катализатора определяют по количеству адсорбированного им аммиака из потока гелия при 200—260 °С. Выбор аммиака в качестве адсорбата обусловлен небольшим размером его молекулы, устойчивостью при высоких температурах, простотой его дозировки в поток газа-носителя, подходящей константной диссоциации (р/( = 4,75), позволяющей определять не только сильные кислотные, но и слабые центры. При анализе используют высокотемпературный хроматограф марки Вилли-Гиде с детектором по теплопроводности и температурой термостатирования 260 С. Хроматограф снабжен системой блокировки для отключения его в случае неконтролируемого повышения температуры выше установленной. Схема установки показана на рис. 44. Гелий из баллона проходит систему очистки, состоящую из кварцевой колонки с окисью меди 5 для очистки от водорода и углеводородов при 600—700°С, колонки с никельхромовым катализатором 7 для очистки от кислорода, колонки с аскаритом 9 для поглощения двуокиси углерода и осушительных колонок с окисью [c.133]

    Первыми твердыми адсорберами, применявшимися для очистки нефтей), были животный уголь, жирный уголь и т. д., но эти продукты были вскоре заменены адсорбирующими землями и гелями. Эти по следпие в особенности применяются для адсорбирования бензина, находящегося в природных газах. [c.213]

    Неравномерный фракционный состав обусловлен нарушением технологического режима в результате следующих причин. Крупная фракция — высокие расходы гелеобразующих растворов мелкая — большое расстояние конуса от уровня масла мелкая и чечевицеобразная — высокая температура масла, т. е. понижение вязкости его разнородная фракция — плохая очистка конуса несформованный гель — частая очистка конуса и кислый золь бесформенные шарики — недостаточное ко.тичество формовочного масла в колонне. Для нормализации фракционного состава необходимо вести формование в полном соответствии с технологической картой. [c.54]

    Измерение скорости электрофореза выполняли в специально сконструированной кювете, схема которой дана на рис. 12.1. Рабочую стеклянную кювету 1 в виде прямоугольного парал-лепипеда с открытыми торцами длиной 20 мм и поперечным сечением 20x0,8 мм помещали между двумя сосудами 2 также прямоугольного сечения, изготовленными из оргстекда. Толщина стенок измерительной ячейки составляла 0,2 мм, что обеспечивало надежную визуализацию микрообъектов при работе с темнопольным микроскопом. Боковые емкости 2 в месте их сочленения с кюветой имели ряд отверстий диаметром 0,5 мм эти емкости прочно закреплялись на основании 3, в котором было высверлено отверстие для вхождения темнопольного объектива 4. Б нижнюю часть емкостей 2 помещали гель агар-агара 5, приготовленный на 1 н. растворе КС1 сверху заливали 0,1 и. раствор USO4 (б) и помещали медные электроды 7. Такая установка удобна в обращении в ней обеспечена герметичность сочленения боковых емкостей с измерительной камерой и возможность тщательной очистки последней после проведения исследований. На основании данных о подвижности частиц дисперсной фазы вычисляли -потенциал по формуле Гельмгольца — Смолуховского без учета поправки на поверхностную проводимость [59]. [c.202]

    Основой для написания данной книги послужили лекции, читаемые Дж. Кемпбелом на курсах усовершенствования специалистов американской газовой промышленности. При повторном издании книги, как указывает автор в предисловии к американскому изданию, были учтены критические замечания и пожелания слуишт лей этих курсов. В книге обобщен опыт американской газовой промышленности в области доведения до товарной продукции добы аемых из недр природных и попутных газов. Ценность приводимого в книге материала заключается в том, что практически весь добываемый в США газ перерабатывается, пройдя предварительно стадию очистки от влаги, сероводорода, углекислоты. Конечными продуктами переработки, является кондиционный природный газ, транспортируемый потребителям по магистральным газопроводам, газовый бензин, товарная газовая сера, гелий, сжиженные газы, индивидуальные углеводороды. В книге достаточно подробно рассматриваются процессы, используемые для этих целей. Особую ценность представляет то, что Дж. Кемпбел не ограничивается только описанием этих процессов, а дает подробный анализ их промышленного использования с указанием преимуществ и недостатков. [c.5]

    ГПЗ, работающие на попутном нефтяно М газе, предназначены для получения стабильного бензина, сжиженных углеводородных газов (лропана, нс рсмального бутана, изобутана или их смесей), а также сухого газа. ГПЗ, работающие на конденсате газоконденсатных месторождений, предназначены для получения бензина марок А и Б, мазута, дизельного топлива, уайтапирита и др. Наконец, ГПЗ, работающие на прнродно1М газе, осуществляют очистку и осушку газа с выделением из него серы, сажи, гелия, углекислоты и др. [c.139]

    Рассмотрены основные процессь[ очистки природного газа от кислых компонентов (сероводорода, диоксида углерода и меркаптанов) и производство серы методом Клауса. Приведены классификация и технологические схемы установок очистки и разделения углеводородных газов. Изложены основные принципы выбора поглотителей для очистки гаэа и обоснована стратегия выбора оптимальных технологических режимов. Приведены классификация низкотемпературных процессов разделения углеводородных газов (низкотемпературная конденсация, ректификация, абсорбция и адсорбция) и особенности технологических схем соответствующих установок. Изложены основные этапы получения гелия из природного газа и представлены технологические схемы отечественных установок получения гелиевого концентрата и тонкой очистки гелия. [c.2]

    Низкотемпературная адсорбция (НТ-адсорбция) основана на различной способности компонентов газа адсорбироваться на твердых поглотителях. Они используются обычно для извлечения компонентов газа, имеющих очень низкое парциальное давление, вследствие чего извлечение их из газового потока другими методами весьма затруднительно. Эти процессы отличаются от всех низкотемпературных процессов разделения газов высокой избирательностью, но в то же время это весьма дорогостоящие процессы и требуют обеспечения хорошего теплосъема и четкого контроля за процессом. В связи с этим они применяются только для получения продуктов высокой степени чистоты, например, для тонкой очистки гелия от микропримесей и т.п. [c.134]

    Процессы НТ-адсорбции используются в процессах газопереработки в основном для очистки инертных газов (гелий, неон, аргон и др.) от микропримесей кислорода и азота или для очистки воздуха от СО2. Для обеспечения хорошего теплосъема применяются адсорберы кольцевого типа или в виде кожухотрубчатого теплообменника. [c.150]


Смотреть страницы где упоминается термин Гелий очистка: [c.178]    [c.31]    [c.112]    [c.230]    [c.135]    [c.130]    [c.131]    [c.345]    [c.19]    [c.141]    [c.161]    [c.164]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.258 ]




ПОИСК







© 2025 chem21.info Реклама на сайте