Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород определение в неоне

    Для определения содержания кислорода в неоне и гелии снимали в одинаковых условиях по пять, спектров проб и эталонных смесей, вводя каждый раз в разрядную трубку новую порцию газа. Почернения аналитических линий даны в таблице. Коэффициент вариации метода анализа по одному спектру 15%. [c.121]

    Азот определяется по линиям в области 3660 А. Чувствительность анализа при определении чистоты гелия достигает 10 %. Поскольку наблюдается значительное поглощение азота поверхностью стекла, для уменьшения возможной ошибки необходимо трубку предварительно промыть смесью, содержащей до 10" % азота. С увеличением молекулярного веса инертных газов чувствительность определения азота понижается. В неоне азот анализируется при содержании в пределах 10" —10 %, в аргоне — в пределах 10" —10" %. При определении содержания суммы примесей углеводородов относительная чувствительность анализа составляет 10" -10 %. Кислород в неоне и гелии анализируется [c.268]


    Рассматривая в этой таблице ряд от водорода до неона, замечаем, что по мере возрастания зарядов ядер свойства элементов изменяются в совершенно определенном направлении. Так, валентность по кислороду, начиная от лития и кончая азотом, у каждого последующего элемента увеличивается на единицу, а валентность по водороду от углерода к фтору, на- [c.55]

    Если теперь рассмотреть элементы от натрия до аргона, то нетрудно заметить, что они в значительной степени повторяют свойства элементов от лития до неона. Причем повторение проявляется в определенной последовательности натрий повторяет свойства лития, магний — бериллия, алюминий—бора, кремний — углерода, фосфор — азота, сера — кислорода, хлор —фтора, аргон —неона, т. е. каждый восьмой элемент повторяет свойства первого. Следующий за аргоном калий повторяет свойства натрия и лития, кальций—магния и бериллия и т. д., иначе говоря, свойства элементов периодической системы повторяются. [c.56]

    В промышленности азот получают разгонкой жидкого воздуха в ректификационных колоннах. В качестве ценных побочных продуктов при этом получаются кислород и аргон, а при определенных условиях, кроме того, еще неон и гелий. [c.130]

    Из всех известных химических элементов фтор наиболее сильно проявляет окислительные свойства. Фтор соединяется практически со всеми элементами, окисляя их. Даже такой элемент, как кислород, являющийся сильнейшим окислителем, окисляется фт0)Р0м. Кислород сгорает в атмосфере фтора. Совсем недавно считали, что благородные газы (аргон, ксенон, неон и др.) не способны взаимодействовать с другими веществами. Однако оказалось, что при определенных условиях фтор может вступать в реакцию и с этими газами. [c.62]

    Методы определения влаги по точке росы успешно применяются для анализа воздуха, азота, водорода, кислорода, монооксида углерода, диоксида углерода, метана, аргона и неона. Следует учесть, что вызывающие коррозию газы, такие как хлористый водород и сероводород, могут разъедать металлические поверхности. Кроме того, на зеркале для наблюдения точки росы могут конденсироваться, помимо воды, и другие соединения, например тяжелые углеводороды, смазочные масла и аммиак. Приборы для [c.574]

    Хроматограф Луч . Лабораторный газовый малогабаритный универсальный хроматограф. Предназначается для определения примесей, адсорбирующихся слабее основных компонентов. Определяют микропримеси гелия, неона, водорода в атмосферном воздухе кислорода, оксида углерода в чистом этилене водорода в аргоне и др. Минимальная определяемая концентрация примесей легких газов составляет Ы0 % (объемн.). Объем анализируемой пробы от 100 до 1000 мл. Максимальная температура колонки 200 °С, испарителя — до 250 °С, точность термостатирования 2°С. [c.206]


Рис. 70. Градуировочные кривые для определения кислорода в гелии и неоне. Рис. 70. <a href="/info/649087">Градуировочные кривые</a> для <a href="/info/80550">определения кислорода</a> в гелии и неоне.
    В очень больших количествах в настоящее время получение азота в технике производят сжижением и фракционированной перегонкой воздуха В качестве ценных побочных продуктов при этом получаются кислород и аргон, а при определенных условиях, кроме того, еще неон и гелий. [c.634]

    В настоящей работе описываются опыты по определению адсорбции газовых ионов на металлических и стеклянных поверхностях. Работа ограничивается почти исключительно ионами инертных газов—гелия, неона, аргона и криптона. Было проведено лишь небольшое количество опытов с азотом и кислородом. Применяемый метод состоит скорее в определении десорбционных свойств, чем адсорбционных после сорбции на поверхности мишени прп бомбардировке ее попами удаляли газ нагреванием. Система непрерывно откачивалась количество выделяющегося газа определяли интегрированием давления по времени. Преимущество этого метода но сравнению с методом работы в замкнутой системе состоит в том, что сорбция может быть проведена в простых и легко контролируемых условиях при постоянном и низком фоновом давлении. Однако такой метод не позволял провести точного сравнения количеств выделившегося [c.534]

    Различные газы (воздух, азот, кислород, неон, водород, гелий и др.) н их смеси являются наиболее распространенными рабочими телами низкотемпературных установок. Молекулы газов находятся в непрерывном движении. Силы взаимодействия между ними определяются индивидуальными свойствами вещества, строением молекул и значениями давления и температуры. Известно, что интенсивность молекулярного движения обусловливает определенное значение температуры и кинетической энергии, а сила межмолеку-лярного сцепления определяет агрегатное состояние вещества и потенциальную энергию. Несмотря на то, что молекулы газов движутся с большими скоростями, силы взаимного притяжения могут быть весьма значительными и с ними необходимо считаться. Кроме того, при определенных условиях (большие давления и плотности) на свойства газа влияют размеры молекул. Вместе с тем при невысоких температурах (относительно температуры насыщения) и высоких давлениях (плотность газа мала, расстояние между отдельными молекулами несравнимо больше размеров молекул) кинетическая энергия газа значительно больше потенциальной и последней можно пренебречь, т. е. считать, что силы межмолекулярного сцепления отсутствуют. При этих же условиях можно пренебречь размерами молекул, так как они значительно меньше расстояний между ними. Такой модели в молекулярно-кинетической теории соответствует [c.6]

    М. Г. Гуревичем и Л. П. Колесниковой получено разделение аргона и кислорода на хроматографе БХ-1 с использованием детектора коронного разряда Г-13. В качестве газа-носителя был применен гелий, проходящий через хроматографическую колонку длиной Ъ м и диаметром 4 мм, заполненную молекулярными ситами 5 А. Объем анализируемой пробы 4 мкл. Применение высокочувствительного детектора коронного разряда позволило этим исследователям оперировать с малыми объемами пробы и получить практически полное разделение этих газов при комнатной температуре. Чувствительность определения аргона составляет 10 %. Наряду с указанными компонентами был выделен и неон, а при программировании температуры опыта до 100° С получено разделение аргона, кислорода, криптона и ксенона. [c.61]

    Гуггенгейм проверил возможность определения ВВК по закону соответственных состояний для четырех газов—неона, аргона, азота и кислорода. Лишь для неона наблюдалось заметное отклонение от общей функциональной зависимости, описываемой уравнением [c.178]

    Полноту поглощения азота и кислорода проверяют посредством разрядной трубки 11, а затем с помощью ртутного насоса 1 переводят редкие газы в капилляр 12 и измеряют их объем. Поднятием ртути в затворе 5 отключают трубку 2 от прибора и откачивают редкие газы в адсорбер 3 с углем, охлаждаемый жидким воздухом. Уголь поглощает тяжелую фракцию редких газов, т. е. Аг, Кг, Хе непоглощенные газы—гелий и неон—откачивают и измеряют их объем. Раздельное определение гелия и неона основано на измерении теплопроводности их смеси и производится посредством вспомогательного прибора 13 для измерения теплопроводности газов. Для проведения измерения смесь гелия и неона переводят в камеру прибора, пользуясь ртутным насосом 4, и по окончании измерения удаляют ее через ртутный затвор 7 и кран 8. Содержание каждого из компонентов рассчитывают по калибровочной кривой. [c.246]


    В качестве газа-носителя чаще всего используют гелий, иногда — неон [755]. Детектируют N2 после хроматографического выделения с помощью детектора по теплопроводности [84, 648, 902, 1061, 1153, 1161, 1209], ионизационного аргонового детектора [755], водородно-воздушного пламенного детектора [815] и др. Предложенный в работе [337] метод одновременного определения кислорода и азота в органических соединениях состоит в сожжении вещества с образованием N2 и одновременном превращении кислорода в СО над слоем сажи. Последующее определение N2 и СО осуществляется методом газовой хроматографии. [c.183]

Рис. 189. Градуировочные графики для определения в гелии (а) и кислорода в гелии и неоне (б). Рис. 189. <a href="/info/10311">Градуировочные графики</a> для определения в гелии (а) и кислорода в гелии и неоне (б).
    Атомы кислорода, фтора и неона могут быть, соответственно, двух-, одно- и нульвалентны по числу неспаренных электронов распаривание остальных электронов энергетически не выгодно. У атомов элементов, являющихся аналогами кислорода (S, Se, Те, Ро), фтора (С1, Вг, I, At) и неона (Аг, Кг, Хе, Rn), в наружных слоях имеются вакантные -орбитали, в которые могут быть промотированы электроны при распаривании электронных пар, в результате чего элемент достигает в определенных соединениях валентности, соответствующей номеру группы, — 6, 7 и 8. [c.53]

    При производстве различных химических продуктов большое значение имеет анализ газовых смесей и количественное определение содержания как отдельных составных частей газов, так и примесей в них. Продукты разделения воздуха (кислород, азот, аргон, криптон, ксенон, неон и гелий) широко используются в таких важнейших отраслях промышленности, как химия, металлургия, машиностроение и энергетика. Контроль за качеством этих продуктов основан на использовании химических, физико-химических и физических методов анализа. [c.78]

    Этот метод может быть применен для определения чистоты неона, аргона, криптона, ксенона. Основная возникающая здесь трудность — это подбор соответствующего хладоагента, обеспечивающего конденсацию анализируемой смеси в сравнительно узком диапазоне давлений, ограничиваемом прочностью стеклянной аппаратуры. Температура хладоагента должна быть строго постоянной для этой цели должны быть применены очень чистые хладоагенты жидкие водород, азот, кислород, метан, кипящие при неизменном давлении, или криостаты, позволяющие поддерживать постоянство требуемой температуры. [c.203]

    Основные определения. Влажный воздух представляет собой смесь сухого воздуха, состоящего в основном из азота и кислорода, незначительного количества других газов (неона, гелия, аргона и криптона) и водяного пара. [c.348]

    Дацкевич А.А.,Бодрина Д.Э.,Меньшикова Н.В.-1АХ,1979,М,11 3,550-553 Р1Хим, 1979,12Г55. Газохроматографическое определение прииесей сорбирующихся слабее основного компонента смесей. (Рассмотрена возможность определения примесей в неоне /гелий/, водороде /гелий и неон/, аргоне и кислороде /гелий, неон, водород/ на уровне концентраций 10 -10 q6.%.) [c.269]

    Гелиевый детектор. Разработан для ультрамикроанализа газов. Под воздействием тритиевого источника р-излучения и высокого градиента электрического поля (более 2000 В/см) гелий, используемый в качестве газа-носителя, переходит в метастабильное состояние с определенным ионизационным потенциалом. Все соединения с более низким потенциалом ионизации при этом ионизируются и дают положительный сигнал. Гелиевый детектор дает отклик на все газы, исключая неон. Этот детектор удобен для анализа следовых примесей в высоко очищенных этилене, кислороде, аргоне, водороде, диоксиде углерода и т. д. [c.233]

    Каннулик и Мартин I Л. 1-72], установив значительное расхождение в значениях теплопроводности газов при атмосферном давлении, применили метод нагретой проволоки для определения правильных значений теплопроводности водорода, кислорода, углекислого газа, гелия, аргон а, неона сферном давлении. Этот же метод использован П. И. Шушпановым [Л. 1-73] для исследования теплопроводности паров восьми спиртов и С. И. Грибковой [Л. 1-74] для исследования теплопроводности паров ряда эфиров, А. К. Абас-Заде [Л. 1-75] для исследования теплапроводиости в жидкой и паровой фазах ацетона, [c.87]

    На своем пути в данной среде альфа-частица заданной начальной энергии образует определенное числов пар ионов (ион плюс электрон). Так, альфа-частицы радия в воздухе образуют 1,47 10" пар ионов на каждую альфа-частицу, Rn—1,67 10 пар ионов, F a —2,37 10 пар ионов, и т. д. Разделив энергию альфа-частицы на число образуемых ею пар ионов, получаем, что средняя энергия, затрачиваемая на ионизацию одной молекулы воздуха, составляет около 33 эв. Это число примерно в два раза больше потенциала ионизации молекулы азота (15,65 эв) и почти в три раза больше потенциала ионизации молекулы кислорода (12,70 эв). Объяснение этого расхождения заключается в том, что в число 33 эв входят также потери, связанные с ускорением вырываемых из молекулы электронов, с вырыванием ие только наиболее слабо связанных электронов, но и других, более прочно связанных электронов, а также с возбуждением и диссоциацией молекул газа. То, что при прохож-.вдиии аль4>а-частиц через газ, наряду с ионами, возникают также и возбужденные частицы, с особен1ЮЙ очевидностью явствует из следующих данных [709]. Исследования ионизации гелия и неона альфа-частицами полония показывают [801], что в среднем на одну пару ионов в гелии затрачивается 41,3 эв и в неоне —36,3 эв. Добавление 0,13°/о аргона к гелию приводит к снижению энергии, затрачиваемой на создание пары иоиов, до [c.456]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Качественный анализ примесей инертных газов в гелии проводился в работе Карлик р ]. Для возбуждения спектра применялся высокочастотный ламповый генератор Трубка диаметром 1 —1,5. им с внешними электродами была сделана из кварца, расстояние между электродами равнялось 3,5 см. Давление в различных опытах менялось от 0,01 до 0,1 жл рт. ст. Трубка присоединялась к установке с помощью ртутного шлифа, который давал возможность новорачивать трубку го к одному, то к другому спектрографу, так как одновременно проводилась съемка в видимой и ультрафиолетовой областях спектра. При длительном возбуждении в разряде низкого давления наблюдался эффект усталости, заключающийся в том, что разряд возникал все труднее и труднее. Эффект усталости пропадал, если в трубку впускался воздух или кислород. Перед началом работы установка тренировалась в чистом гелии. Автором составлена таблица чувствительности (в %) определения аргона, криптона, ксенона, неона в гелии для видимой и ультрафиолетовой областей спектра  [c.178]

    Определение кислорода в инертных газах. Кислород в гелии и неоне может быть определен, начиная с концентраций 10 % и выше, если возбуждение смеси производить в высокочастотном разряде в капилляре диаметром 0,5—1 мм при давлении 600 мм рт. ст. Анализ ведется по линиям атомарного кислорода в инфракрасной области спектра. Для неона используется аналитическая пара 01 7772А — Ые 7839А, для гелия 01 7772 А— Не 7281 А. [c.187]

    Чувствительность определения кислорода в аргоне ниже, чем в гелии и неоне, и не превышает сотой доли процента. Аналитической парой служит 01>.7772А—Аг 17624А. [c.187]

    Таким образом, аргон должно определить как особый газ, отличающийся беспримерною (до его открытия) химическою недеятельностью, но совершенно определенный по физическим свойствам, из которых должно также обратить внимание на самостоятельность спектра аргона. А так как самостоятельными спектрами обладают преимущественно (гл. 13) тела простые, то аргон принято считать в их числе, хотя главной характеристики простых тел, т.-е. самостоятельных и своеобразных соответственных соединй ний, для аргона неизвестно. Однако, можно умственно допустить и такой разряд элементов, который не соединяется ни с водородом, ни с кислородом для образования кислотных или основных веществ, так как известны многие элементы, не соединяющиеся с водородом, а фтор не соединен с кислородом, — для образования солеобразных веществ. Если же это так, то мы имеем право образовать особую группу — аргоновых элементов, причисляя к ней гелий Не, неон Не, аргон Аг, криптон Кг и ксенон Хе, не только потому, что они друг друга сопровождают при азоте воздуха и представляют полное между собою сходство—по своей инертности или неспособности вступать известными нам способами в соединения, более или менее сходные с основаниями, кислотами или солями, но также и потому, что эта группа аргоновых элементов совершенно сходна (даже по величине атомных весов) с другими наиболее характерными группами элементов, о чем подробнее говорится в главе 15. [c.170]

    Так как в исследованиях разного рода (особенно над горением, дыханием и т. п.) часто приходится делать подробные расчеты, основанные на знании состава обычного воздуха по весу и объему, то считаю неизлишним свести в одно целое сведения о составе воздуха. Прежде всего должно разделить составные части воздуха на постоянные и переменные, подразумевая под последними не только случайные (напр., продукты дыма или дыхания), но и влажность, потому что абсолютное ее количество (напр., число граммов в куб. метре) сильно изменяется с температурою воздуха и с его степенью сухости Расчет, далее приводимый, относится к постоянным составным началам воздуха, исходя из того, что в сухом воздухе содержится по весу около 2Ъ, 2 1о кислорода с уклонениями не более 0,05 /о и что вес литра такого воздуха (при нормальных условиях, т.-е. при 0 и давлении 760 мм, при географической широте 45 ) около 1,293 г. Затем должно заметить, что хотя водород, аммиак и т. п. всегда входят в состав воздуха, но их количество (напр., 0,02% по объему или 0,0018 >/о по весу водорода) так мало влияет на вес определенного объема воздуха и на все расчеты, до него относящиеся, что покрывается разностями в содержании кислорода и азота, а потому далее нг вводится в расчет. Эти составные части воздуха должно подразумевать все вместе под рубрикою прочие составные части, как под рубрикою аргон должно считать его спутников криптон, неон, ксенон и гелий. Таким образом состав сухого воздуха  [c.494]

    При проведении апализа строят градуировочные кривые для определения аргона в гелии и проверяют отсутствие влияния добавок неона. После этого при тех же условиях разряда строят градуировочные кривые для определения концентрации неона в смеси Ке—Не ири разных концентрациях аргона. Сначала определяют концентрацию аргона по первой градуировочной кривой и фиксируют, какой из второй серии градуировочных кривых можно воспользоваться для определепия концентрации неопа [9]. Аналогичный прием был использован Е. И. Красновой и Е. Я. Шрейдер при разработке методики определения малых концентраций кислорода и азота к водороду. [c.280]

    Для изотопов гелия, неона и ряда веществ, изотопных относительно водорода, углерода, азота, кислорода, сейчас имеются данные о давлении пара (Р), полученные непосредственным определением его абсолютной величины или разности АР = Рт. — Рц, где индексы т и л обозначают тяжелую и легкую разновидности. Для относительных измерений применялись различного вида дифференциальные манометры. Такие приборы, а также использовавшиеся термостаты (криостаты) подробно описаны в работах [63—66, 109]. В некоторых случаях [19, 67] применялся тензи-метрический вариант статического метода [68] с использованием двух-жидкостных манометров [69] при малых давлениях, а также эффузион-ный метод Кнудсена [68]. [c.11]

    При продолжительном периода эксплуатации воздухор-азделитель- ой колонны двукратной ректификации под крышкой конденсатор з-ис-парителя постепенно накапливаются неконденсирующиеся газы, находящиеся в воздухе. Эти газы постепенно заполняют пространство под крышкой конденсатора и, наконец, проникают в трубки конденсатора. Эта газовая смесь состоит из неона, <гелия и прен.му-щественно азота. При накапливании неона и гелия парциальное давление азота уменьшается, разница температур между испаряюпщмся в трубном пространстве кислородом и конденсирующимися парами азота уменьшается и становится недостаточной для конденсации всего азота. Поэтому при эксплуатации кислородных установок через определенные промежутки времени производят иродувку конденсатора, выпуская через верхнюю трубку смесь неона, гелия и азота. Такой периодический выпуск несконденсировавшихся газов необходим для правильной эксплуатации кислородных и азотных установок. [c.322]

    Большое значение при определении микропримесей низкокипящих газов в воздухе и других газах имеет метод вакантохроматографИи [173]. В первых исследованиях Жуховицкого, Туркельтауба и сотр. этот метод использовали главным образом для определения газообразных углеводородов. Но уже вскоре выяснилось, что вакантохроматография позволяет объяснить появление ложных пиков на хроматограммах, получаемых при определении примеси водорода в кислороде, в том случае, если в качестве газа-носителя применяют баллонный азот, содержащий примеси аргона и кислорода [174]. При анализе кислорода наблюдаются также вакансии, соответствующие примесям гелия и неона, присутствующим в азоте. При использовании в качестве газа-носителя водорода, содержащего макропримеси азота и кислорода, наблюдаются отрицательные пики на хроматограммах, соответствующие этим примесям. При очистке [c.38]

    Английская школа достигла ряда существенных успехов в изучении адсорбционных явлений [22]. Было разработано несколько остроумных методов, с помощью которых можно измерять адсорбционные эффекты на поверхности вольфрамовых проволок. Поскольку такие проволоки могут быть нагреты до температур, близких к 2600° К, их поверхность полностью очищается от всех адсорбированных веществ. Величина этих поверхностей может быть легко и довольно точно измерена. Робертс и позже Ван Клив разработали метод измерения коэффициента аккомодации неона на вольфраме и показали, что этот коэффициент значительно больше, когда на поверхности имеются адсорбированные газы, такие, как водород или кислород. Они использовали этот эффект для определения суммарного количества адсорбированного водорода и кислорода, а также для определения температур, при которых водород и кислород могут быть десорбированы. При адсорбции кислорода на вольфраме они наблюдали те же три стадии, которые были описаны в разделе V. Робертс также использовал вольфрамовую проволоку в качестве чувствительного калориметра для измерения теплот адсорбции. [c.233]

    В заключение следует упомянуть о количественном определении микропримесей (доли ррт) двуокиси азота в азоте и кислороде с детектором с электронным захватом [111] и следов аргона, водорода, окиси углерода, кислорода, азота и неона с использованием радиоактивного ионизационного детектора [112]. [c.154]


Смотреть страницы где упоминается термин Кислород определение в неоне: [c.66]    [c.66]    [c.50]    [c.397]    [c.657]    [c.661]    [c.665]    [c.338]    [c.460]    [c.322]    [c.179]    [c.191]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.426 , c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород определение

Неон



© 2025 chem21.info Реклама на сайте