Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тербий спектр

    С целью изучения механизма химической деструкции НПАВ использован эффективный метод изучения взаимодействия гидрофильных фрагментов мицеллярных растворов методом спектроскопии ЯМР Н с добавкой сдвигающих реагентов [48]. Введение шифт-реагентов в исследуемый раствор вызывает смещение резонансных линий в спектрах ЯМР Н. Эффективными шифт-реагентами являются соли тербия [49]. [c.43]


    На примере анализа спектров ЯМР Н неонола АФ,-12 с парамагнитной солью тербия ТЬ(КО,) исследовано химическое взаимодействие НПАВ с минерализованными пластовыми водами. Парамагнитная соль тербия использована в качестве модели взаимодействия НПАВ. Если учесть, что форма сигнала обусловлена проникающей способностью соли, то вид сигнала при одинаковой концентрации тербия будет зависеть от размера аниона, то есть от природы противоиона. [c.43]

    Фракции земель Мариньяка, расположенные между тербием н эрбием, были спектроскопически изучены Соре, который обнаружил разделение в спектре. Элемент X, названный так Соре, впоследствии химиком Клеве был назван гольмием (производное от Стокгольма). Открытие этого элемента приписывается Клеве, хотя справедливее было бы считать первооткрывателем гольмия Соре. Таких эпизодов в истории открытия РЗЭ множество [6]. [c.65]

    Серии линий рентгеновского излучения. На рис. 3.38 представлена подробная диаграмма серий линий рентгеновского излучения, которые существуют для каждого элемента. Степень сложности серии является функцией атомного номера элемента. Так для углерода, у которого имеются два электрона на А-оболочке и четыре электрона на L-оболочке, возможна лишь генерация линий Ка рентгеновского излучения. Хотя электроны с L-оболочки углерода могут быть удалены при столкновении, на Л4-оболочке нет электронов, которые бы смогли заполнить вакансию. Натрий (2=11) имеет один электрон на Л4-оболоч-ке, так что могут испускаться как Ка, так и A -линии рентгеновского излучения. Для тяжелых элементов со сложной структурой оболочек, таких, как свинец, серия линий рентгеновского излучения становится более сложной. В гл. 6 приведены примеры рентгеновских спектров, полученных в диапазоне энергий 1—20 кэВ с помощью рентгеновского спектрометра с дисперсией по энергии для титана А , Ар (рис. 6.2), меди Ка, Ар, L (рис. 6.8), а также L-серии и М-серии для тербия (рис. 6.9). Из этих спектров видно, что сложность спектра возрастает с атомным номером. Отметим, что на этих рисунках многие линии не разрешаются, например Ка —Ааг, из-за слабого разрешения спектрометра с дисперсией по энергии (см. гл. 5). [c.74]

Рис. 6.8. Спектр тербия, 20 кэВ (0—10,24 кэВ), демонстрирующий L- и М-серии. Рис. 6.8. Спектр тербия, 20 кэВ (0—10,24 кэВ), демонстрирующий L- и М-серии.

    Например, эту методику использовали для одновременного определения 5с и Ву в рудах, богатых редкоземельными элементами, почвах и окиси иттербия [333, 334]. Образцы облучали 30 сек, выдерживали 10 сек, измеряли 30 сек, снова выдерживали 30 сек и опять измеряли 30 сек. Определение 5с проводили по 5с ", а Оу — по Оу ". Для примера на рис. 56 приведены спектры образца колумбита, полученные этим методом. Подобная методика была использована для определения Оу в окиси тербия [335]. [c.257]

Рис. 3. Запись спектра флуоресценции тербия (/) и кривых пропускания светофильтров Рис. 3. <a href="/info/250447">Запись спектра</a> <a href="/info/830450">флуоресценции тербия</a> (/) и <a href="/info/537713">кривых пропускания</a> светофильтров
    Аномальные валентности лантаноидов исследовал и объяснил немецкий химик Вильгельм Клемм. По рентгеновским спектрам он определил основные параметры их кристаллов и атомные объемы. На кривой атомных объемов явно выражены максимумы (европий, иттербий) и менее резко — минимумы (церий, тербий). Празеодим и самарий тоже выпадают, хотя и не так сильно, из ряда, определяемого плавно ниспадающей кривой. Поэтому первый тяготеет к малообъемным церию и тербию, а второй — к крупным европию и иттербию. Элементы с большими атомными объемами крепче удерживают электроны, и потому бывают лишь трех- или даже двухвалентными. [c.73]

    Однако изучение свойств элементов № 93—100 показало, что такой вывод был бы неправилен. По мере перехода от урана к заурановым элементам устойчивость высших валентностей не возрастает, а падает наиболее устойчивым становится трехвалентное состояние. Кюрий, берклий, калифорний, эйнштейний и фермий оказываются полными аналогами соответствующих элементов — гадолиния, тербия, диспрозия, гольмия, эрбия. Кристаллографические исследования показали тесную близость кристаллических структур окислов и многих солей элементов от тория до америция. Весьма схожими оказались спектры поглощения водных растворов соединений элементов, следующих за лантаном и за актинием, а также магнитные свойства ионов этих элементов (рис. 15, 16). Тесное родство лантанидов и актинидов явствует и из приводившихся выше данных об их ионообменном разде- [c.300]

    Отсутствие флуоресценции у некоторых анионов, таких, как нитрат-анион, также обусловлено фоторазложением. В окрашенных комплексах некоторых переходных элементов поглощенная энергия деградирует через более низкие возбужденные состояния, возникновение которых обусловлено наличием частично заполненных -орбиталей. Редкоземельные элементы имеют частично незаполненную 4/-оболочку, и электроны, находящиеся на 4/-уровнях, поглощая свет, могут перейти на незаполненные 4/-уровни. Эти уровни хорошо экранированы от внешних влияний наиболее удаленными от ядра электронами, занимающими в трехвалентных ионах орбитали 5з и 5р. Поэтому безызлучательная дезактивация мала, и в кристаллофосфорах все редкоземельные элементы, содержащие от 2 до 12/-электронов, а именно Рг, N(1, 8т, Ей, Сс1, ТЬ, Оу, Но, Ег, Ти, дают линейчатое испускание. Считают, что в жидких растворах линейчатое испускание ограничено пятью ионами элементов середины ряда, а именно самария, европия, гадолиния, тербия и диспрозия [126]. Спектры поглощения редкоземельных элементов сложны, и испускание может происходить с нескольких энергетических уровней. Простые соли (например, хлориды, сульфаты) пяти ионов, которые люминесцируют в растворе, дают линейчатое поглощение, мало интенсивное в водной среде, и при низких концентрациях эти вещества трудно возбуждаются. Хлорид тербия можно возбудить линией ртути 366 нм (уширенной давлением), и с помощью чувствительного спектрофлуориметра обнаружить концентрации вплоть до 10" М. Хлориды самария, европия и диспрозия этой группой длин волн возбуждаются менее интенсивно (рис. 177 и табл. 52 в разделе V, Ж). При возбуждении более коротковолновым светом растворы хлорида гадолиния дают линейчатое испускание при 310 нм (рис. 177). Интенсивность по- [c.448]

    Наибольшей интенсивностью среди РЗЭ обладает фиолетовая флуоресценция иона СеЗ+ фотографирование сплошной полосы его излучения в области 315—407 ммк допускает открытие церия при разбавлении раствора до 10 % [67, 68] и определение при содержании 1—5 мкг]мл [110]. Желто-зеленое излучение раствора тербия состоит из ряда узких полос, наиболее яркие расположены около 490, 545, 590, 620 и 650 ммк чувствительность его фотографического открытия достигает 10 % [67, 68]., Описано количественное определение этого элемента при возбуждении водородной лампой на спектрофотометре с фотоумножителем, возможное в присутствии трехвалентных ионов других РЗЭ [220] (см. табл. 1У-23). Узкая полоса излучения гадолиния, расположенная около 310 ммк, дает возможность открывать его при концентрации до 10 %. Чувствительность открытия по красной флуоресценции европия (основные группы линий около 593, 616 и 695 ммк) намного ниже и соответствует около 0,01% [67, 68]. Значительно слабее по интенсивности широкие диффузные полосы излучения празеодима и неодима, а также узкие полосы (группы линий) самария и диспрозия [68]. Спектр флуоресценции празеодима состоит из ультрафиолетовой полосы 225—320 ммк с максимумами около 240 и 275 ммк, которая в 10 раз интенсивнее его голубого излучения в области 450—530 ммк с максимумом при 485 ммк [253]. Оранжево-красное свечение самария включает три группы линий, расположенных около 560, 595 и 640 ммк [99] спектр диспрозия содержит линии с длиной волны 472, 489, 571 и 665 ммк [64]. Использованию собственной флуоресценции ионов РЗЭ (кроме тербия) в практике массового химического анализа препятствует отсутствие стабильных и достаточно мощных источников коротковолнового ультрафиолетового излучения, необходимого для возбуждения иХ свечения. [c.191]


    Большие перспективы для определения некоторых РЗЭ представляет явление, открытое в результате систематического из-З чения их комплексов с рядом органических реагентов [96, 97, 99, 136, 137]. В этих соединениях энергия возбуждения, поглощенная органической частью комплекса, в результате внутримолекулярной миграции передается иону металла и излучается в виде линий спектра, характерных для данного РЗЭ. При понижении температуры квантовый выход флуоресценции сильно возрастает и при температуре жидкого воздуха в ряде случаев достигает величины 0,9—1,0 [96]. Но и при комнатной температуре и облучении ртутной линией 365 ммк некоторые редкоземельные элементы в составе комплексов обладают характерной и достаточно яркой флуоресценцией. 2,2 -дипиридил и 1,10-фенантролин могут быть использованы для одновременного открытия диспрозия, европия, самария и тербия. При их [c.191]

    Спектр активности облученного урана очень широк — в нем присутствует более 200 различных ядер. Среди активных продуктов деления найдены все элементы от цинка до тербия, т. е. 36 элементов [5]. Очистка от элементов, лежащих в разных группах периодической системы элементов и обладающих разными химическими свойствами, представляет трудную задачу. Вместе с тем среди продуктов деления имеется ряд изотопов сравнительно ко- [c.31]

    Особенно эффективен спектрально-люминесцентный метод при анализе суммы лантанидов, а также при контроле чистоты препаратов, так как присутствие остальных лантанидов не мешает определению европия, самария, тербия и диспрозия. В спектрах определяемых элементов имеются характерные линии, не перекрывающиеся между собой. [c.321]

    При определении тербия поступают подобным же образом, фенантролина берут 0,1 мл 0,15 М раствора и салицилата натрия 0,15 мл 0,3 М раствора, проводят двухкратную экстракцию, как при определении европия. После соединения экстрактов и фильтрования или непосредственно фотометрируют растворы, или же отбирают 2 мл экстракта и разбавляют бензолом до 8 мл. В последнем случае достигается некоторое увеличение чувствительности вследствие устранения гасящего влияния фенантролина. Запись спектра флуоресценции экстракта проводят в области 530—560 ммк. Высоты пиков европия измеряют при 543 ммк. [c.323]

    Тербий, церий и европий можно определить в водных растворах по спектрам флуоресценции определяемый предел соответственно равен 0,01 0,1 и 100 у/мл . Гадолиний дает только слабую флуоресценцию. [c.393]

    Установлен механизм разрушения молекул НПАВ. На примере анализа спектров ЯМР Н неонола АФ,-12 с парамагнитной солью тербия ТЬ(КОз)з показано, что НПАВ эффективно взаимодействует с солями переходных и непереходных металлов на достаточно большую глубину слоя оксиэтильных фрагментов. Растворы НПАВ в пластовых условиях конкретных месторождений подвергаются деструкции с образованием алкилфенолов и остатков полиоксиэтиленового фрагмента с последующей переэтерифика-цией до сульфидных фрагментов. [c.52]

    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    Ниже 3 кэВ линий К-, Ь- и М-серий разнятся по энергии настолько незначительно, что пики не разрешаются Si (Li)-спектрометром. Как выглядят эти серии при энергии ниже 2 кэВ, иллюстрируется на рис. 6.4 (Siл , 1,74 эВ), рнс. 6.5 (У1, 1,92 кэВ) и рис. 6.6 (Там, 1,71 кэВ). Следует отметить, что А -пики имеют почти гауссову форму (из-за уменьшения относительной высоты Кр-пика примерно до 0,01 высоты пика Ка), в то время как Ь- и М-линии асимметричны из-за наличия в окрестности главного пика нескольких неразрешенны.х пиков значительной высоты. Поскольку в спектре будут наблюдаться все рентгенсзские линии, для которых энергия пучка выше критической энергии возбуждения, то нужно локализовывать все линии данного элемента. Рассматривая диапазон энергий 0,7—10 кэВ, можно заменить, что если в спектре появляется высокоэнергетическая А -линия [6,4 кэВ (железо) и выше], то в спектре также будет и низкоэнергетичсская -линия элемента. На рис. 6.7 такая ситуация показана для К- и -линий меди. Аналогично, если наблюдается высокоэнергетическая -линия [4,8 кэВ (церий) или выше], то низкоэнергетическая М-линия также будет присутствовать. На рис. 6.8 такая ситуация показана для Ь- и М-линий тербия. Из-за существенны.х различий в характере генерации и поглощения низко- и высокоэнергетического рентгеновского излучения в качественном анализе невозможно нспользовать относительные высоты пиков между К-, Ь- или /И-сериями. [c.279]

    При проектировании поисковых флуороскопических систем вполне достаточно ограничиться исследованием и применением двух указанных типов люминофора, поскольку их спектр высвечивания максимально соответствует спектральной чувствительности мультище-лочных фотокатодов ЭОПов второго, два + и третьего поколения, а коэффициент конверсии выше, чем для ряда сульфидных и оксисульфидных, активированных тербием, люминофоров. [c.634]

    Аномальные валентности лантаноидов исследовал и объяснил немецкий химик Вильгельм Клемм. По репт-геновскил спектрам он определил основные параметры их кристаллов н атомные объемы. На кривой атомных объемов явно выражены максимумы (европий, иттербий) и менее резко — минимумы (церий, тербий). Празеодим и самарий тоже выпадают, хотя и пе так сильно, из ряда, определяемого плавно ниспадающей кривой. Поэтому первый тяготеет к малообъемным церию и тербию, а второй — к крупным европию и иттербию. Элементы с большими атомными объемами крепче удерживают электроны, и потому бывают лишь трех- или даже двухвалентными. В малообъемпых атомах, напротив, один из внутренних электронов заключен в оболочке недостаточно прочно — потому атомы церия, празеодима и тербия могут быть четырехвалептными. [c.117]

    Для редкоземельных элементов характерных реакций, за исключением окраски некоторых окислов, неизвестно. Поэтому для их обнаружения приходится прибегать к испытанию со щавелевой или фтористоводородной кислотой. Некоторые из редкоземельных элементов образуют окрашенные окислы и растворы, но случаи, когда эти элементы встречаются в достаточно значительных количествах и не связаны с другими окрашенными соединениями, сравнительно редки. Присутствие редкоземельных элементов часто можно. установить исследованием спектра света, отраженного гидроокисью или каким-либо другим соединением, или же исследованием света, проходящего через раствор этих соединений. Наличие в спектре полос, характерных для неодима и празеодима, указывает на присутствие цериевой группы, а в случаях, когда наблюдаются полосы, свойственные эрбию, всегда присутствует иттриевая группа. Необходимо отметить, что при прокаливании на воздухе церий, празеодим и тербий образуют высшие окислы, вследствие чего получаются повышенные результаты для суммы окислов, если в массу прокаленного осадка от аммиака вводят поправку на содержание трехвалентных окислов редкоземельных металлов. [c.619]

    Свечение самария, европия и тербия связано с возбуждением их ионов ири переносе энергии от органической части молекулы и поэтому отличается по спект-рально характеристике. Цвет свечения зоны самария — красный, европия — ярко-оранжевый, тербия — зеленовато-желтый или желтый. В случае необходимости для дифференциации спектров свечения можно применить простой спектроскоп или призмзг прямого зрения. [c.103]

    Для определения тербия была использована флуоресцентная реакция с 4-сульфофенил-З-ме-тилпнразолоном-5 [4]. Зеленая полоса свечения комплекса тербия с максимумом при 543 ммк выделялась с помощью блокирующих светофильтров ЖС-18, ЖС-4 и интерференционного светофильтра с полосой пропускания 520—560 ммк (максимум при 543 ммк, коэффициент пропускания в максимуме 25% и полуширина пропускания 10 ммк). Запись спектра люминесценции тербия и кривые пропускания светофильтров показаны на рис. 3. Метод специфичен, все другие р. з. э., [c.209]

    Насколько примеси осложняют картину, видно из следующих данных. Зайдель и Ларионов, работы которых посвящены детальному изучению флуоресценции растворов р.з.э. [1], обнаружили, что присутствие следов азотной кислоты парализует флуоресценцию тербия. Равным образом эти авторы объясняют расхождение своих данных с более ранним описанием спектров флуоресценции р.з.э., опубликованным Штарком [c.159]

    Спектры флуоресценции европия и тербх1Я состоят из ряда характерных полос. Цвет флуоресценции раствора солей европия — красный, солей тербия — желто-зеленый. Со.пп европия еще уловимы при концентрации 10 , /мл. В примеиепии к тербию чувствительность метода значительно выше для ех о соле11 концентрации порядка 10 —10 г/мл не я) - тяются еще иредельными. Помимо обычной флуоресценции, соли тербии обладают длительным свечением порядка 0,001 сек. [c.159]

    Удобными для целей качественного анализа являются описываемые Гайтингером [7] наблюдения флуоресценции р.з.э. в шариках буры и фосфорной кислоты, получаемых приемами, общепринятыми в качественном анализе. По Гайтингеру при возбуждении искрой удается наблюдать с помощью спектрального окуляра от 3 до 6 отдельных полос в спектрах флуоресценции ряда солей. Так, у еврония — три полосы вишнево-красная, оранжевая и желтая у самария — 6 темно-красная, вишнево-красная, оранжевая, желтая, зеленая и зелено-синяя. Похожий спектр, но менее характерный, имеют соли гадолиния. В шариках буры вся триада элементов — Sm, Ей и Gd — флуоресцирует чрезвычайно ярко. Не менее ясно выражены полосы в спектрах флуоресценции диспрозия и особенно тербия. Цериевые шарики буры светятся ярко-синим светом,— сиектр сплошной с Таблица 15 максимумом интенсивности около 450 ммк. [c.162]

    Сдвигающие реактивы в спектроскопии ЯМР С. Лантанидные сдвигающие реактивы (ЛСР) [7] в последнее время интенсивно используются в спектроскопии ЯМР Н для упрощения спектров сложных соединений, содержащих координирующие функциональные группы (гидроксильную, карбонильную, эфирную и т. д.). Эти же реактивы можно применять и в спектроскопии ЯМР С. Поскольку сигналы в спектрах углерода, как правило, хорошо разрешены, использование ЛСР не сулит в данном случае особых выгод. Тем не менее измерение псевдоконтактных сдвигов, обусловленных ЛСР, в некоторых случаях [8, 9] оказалось полезным при проведении отнесения в спектрах ЯМР С. Мосс и др. [8а] использовали ЛСР европия, празеодима и тербия для отнесения сигналов в спектре борнеола (I). Венкерт и др. [86] сообщили об отнесении сигналов для пиперина (И) [c.45]

    Своеобразные линейные спектры свечения, иногда отличные от обыкновенных искровых спектров, по исследованиям Лекока де-Боабодрана, можно получить, если положительный полюс румкорфовой катушки погрузить в раствор хлористого металла, а отрицательный укрепить непосредственно над поверхностью жидкости. Полученные таким образом спектры подобны спектрам фосфоресценции Крукса. Этим путем были получены указания на существование новых элементов в гольмии, тербии и самарии. [c.437]

    Примерно такие же процессы разыгрываются в органических соединениях некоторых редкоземельных ионов, например в трис-дибензоилметиде европия. Их щирокие спектры поглощения обусловлены органическими лигандами. Часть энергии возбуждения передается одному из 4/-электронов центрального редкоземельного атома, и он переходит на более высокую незаполненную 4/-орбиталь. У многих редких земель эта энергия теряется в безызлучательных процессах, однако у европия, тербия, диспрозия и самария наблюдается линейчатое испускание, обусловленное одним или несколькими переходами типа 4/ 4/т- Это явление обычно называют внутримолекулярным переносом энергии, однако его можно также рассматривать как разновидность интеркомбинационнои конверсии из состояния я (низщее триплетное состояние) в одно из атомных состояний . Этот процесс подробно рассматривается в разделе V, Д, 3. [c.88]

    Перенос энергии от триплет-возбужденной органической молекулы к соединениям редкоземельного элемента может определяться диффузией, т. е. идти аналогично процессам переноса энергии от триплета к синглету и от триплета к триплету, которые обсуждались в разделах П, В, 4 и И, Г, 2. Так, Эль-Сайед и Баумик [396] показали, что триплетное состояние бензофенона может отдавать энергию хелатам европия с помощью процесса, определяемого диффузией, а Матович и Судзуки [397] сообщили, что в ацетофеноне и других ароматических кетонах соли редкоземельных элементов молено возбудить через растворитель. Боллард и Эдвардс [398] изучили концентрационную зависимость спектров испускания растворов нитратов 8т +, Оу +, ТЬ + и в ацетофеноне. Полученные результаты они интерпретировали на основе контролируемого диффузией межмолекулярного переноса энергии от триплета ацетофенона к редкоземельному иону. Хеллер и Вассерман [399] нащли, что люминесцентные уровни ТЬ + и (или) Ец2+ могут быть сенсибилизованы переносом энергии, определяемым диффузией, от триплетных состояний 21 ароматического альдегида и кетона в растворе в уксусной кислоте при комнатной температуре. Тот же принцип использовали Вайнфорднер и Мак-Карти [400], чтобы сенсибилизовать люминесценцию европия, тербия, самария и диспрозия в уксусном ангидриде (см. раздел V, Ж, 2). [c.459]

    Детальное изучение абсорбционных спектров редкоземельных элементов осуществлено в [68]. Авторы, распыляя 1%-ные растворы элементов в сильновосстановительное пламя и применяя атомно-абсорбционную аппаратуру, описанную ранее [69], обнаружили большое число абсорбционных линий для всех редкоземельных элементов, за исключением церия. Для лантана ими приводится 5 линий, празеодима—25, неодима— 79, самария—215, европия—33, гадолиния—37, тербия—ПО. диспрозия—140, гольмия—140, эрбия —142, тулия—82, иттербия—7 и для лютеция—18. [c.233]

    Для количественного Л. а. необходимо знать механизм реакций, учитывать возможность образования нефлуоресцирующих веществ, напр, озон можно количественно определять по образованию ярко флуоресцирующего акридина в результате взаимодействия озона с дигидроакридином. Многие неорганич. вещества флуоресцируют в твердом состоянии, в растворах же флуоресцируют лишь соли уранила и соли редкоземельных элементов. Наиболее интенсивно в р-рах флуоресцируют тербий, гадолиний и церий. Спистры редкоземельных элементов состоят из характерных для каждого элемента линий и полос с большой точностью можно определить семь из них (Се, 8т, Ей, 0(1, ТЬ, Ву, Рг). Чувствительность Л. а. очень большая, напр, соли тербия можно определить в концентрации 10 8—10 8 г мл. В твердых р-рах редкоземельные элементы сохраняют типичные линейчатые и полосатые спектры, что было использовано для их определения. Люминесценцию твердых р-ров можно исполь-.зовать для открытия сурьмы, висмута и свинца уран определяют в виде перлов, чувствительность метода 10 —Ю 1" г урана в 0,3 з фторида натрия. [c.499]

    Наиболее ярко флуоресцируют трехвалентные ионы лантанидов цериевой группы самарий, европий, гадолиний, тербий и диспрозий. Твердые соли этих элементов и их растворы имеют яркую флуоресценцию при возбуждении светом с длиной волны 200—300 ммк. В этой области длин волн ионы лантанидов имеют бесструктурные спектры поглощения. [c.141]

    Флуоресценцию тройных комплексов европия и тербия наблюдают в ультрафиолетовом свете ртутно-кварцевой лампы СВД-120А со светофильтром УФС-1. В спектрах флуоресценции этих комплексов наблюдаются три полосы свечения с максимумами  [c.321]

    Ход определения диспрозия и тербия с 4-сульфофенил-3-метил> пиразолоном-5 в окислах лантанидов. Растворяют 25 мг прокаленных окислов в концентрированной соляной кислоте и ее избыток выпаривают сухой остаток растворяют в дистиллированной воде и раствор разбавляют до 100 мл. В три градуированные пробирки помеш,ают по 1 мл полученного раствора, в одну из них добавляют, в зависимости от ожидаемого содержания диспрозия, стандартный раствор диспрозия, соответствующего 0,1—10 мкг ВуаОз, в другую—стандартный раствор тербия в таком же количестве, разбавляют немного растворы водой, прибавляют 2 мл 4%-ного водного раствора уротропина и 0,75 мл 0,02%-ного свежеприготовленного водного раствора реагента. Разбавляют все растворы до 10 мл и через 30 мин записывают пики флуоресценции для диспрозия при 574—577 ммк (в участке спектра от 555 до 595 ммк) или тербия при 543 ммк (от 530 до 570 ммк). По величине полученных пиков находят содержание элементов в образце. [c.325]

    В заключение заметим, что собственный спектр поглощения комплексообразующего вещества (свободного и связанного в комплекс с ионами РЗЭ) должен также учитываться при разработке метода анализа. Обычно св011ствепные многим бесцветным комнлексообразующим веществам, особенно органическим, полосы поглощения света в ультрафиолетовой части спектра затрудняют или делают невозможным определение ряда элементов, в первую очередь тербия, гадолиния и европия. В частности, при использовании в качестве комплексообразующего вещества теноилтрифторацетона в бензольном растворе (длина кюветы равна 1 см, концентрация реактива 0,1 М) определение РЗЭ можно производить только в области спектра с длинами волн более 420 нм. [c.341]

    Подобно соединениям празеодима, соединения тербия прп плавлении со щелочью, с добавлением хлората калия, дают коричнево-черные щелочные соли тербия, находящегося в высшей степени валентности. Отличить его от празеодима удается только наблюдением абсорбционного спектра растворов простых солей. Эта реакция годится также при обогащении тербпем редкоземельных смесей [197]. [c.76]


Смотреть страницы где упоминается термин Тербий спектр: [c.179]    [c.17]    [c.373]    [c.373]    [c.432]    [c.447]    [c.449]    [c.8]    [c.232]    [c.376]    [c.378]    [c.379]    [c.98]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Тербий



© 2024 chem21.info Реклама на сайте