Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос вещества количества движения

    Тройная аналогия между переносом количества движения (импульса), тепла и вещества. Теоретическим анализом и многочисленными экспериментальными исследованиями установлено, что между механизмами переноса механической энергии, тепла и массы в определенных условиях существует приближенная аналогия. Известно, например, что в ядре турбулентного потока вследствие интенсивного перемешивания частиц происходит выравнивание их скоростей, а в процессах тепло- и массопереноса — выравнивание соответственно температур и концентраций. В пределах же пограничного слоя наблюдается резкое падение скоростей, температур и концентраций вследствие пренебрежимо малого действия турбулентных пульсаций. [c.152]


    Таким образом, в ограниченном диапазоне Re можно говорить о приближенной тройной аналогии в переносе тепла, вещества и количества движения. [c.468]

    Область гидромеханических процессов весьма широка, она включает многочисленные и достаточно разнородные процессы (технологические приемы) — соответственно назначению и особенностям объектов. Гидромеханические процессы основаны на переносе импульса (количества движения) — именно этот признак объединяет указанные процессы в отдельную фуппу. Конечно, и другие химико-технологические процессы используют перенос импульса, но превалирует там перенос иных субстанций (теплоты, вещества). Гидромеханические процессы в своем осуществлении и описании непосредственно базируются на закономерностях переноса импульса, устанавливаемых технической гидравликой (см. гл. 2). При описании гидромеханических процессов рассматриваются внутренняя, внешняя и смешанная задачи гидродинамики. [c.377]

    Отдельной (важной ) проблемой являются границы (пределы) сохранения аналогии в переносе импульса (количества движения), теплоты и вещества. В общем, можно сказать, что тройная аналогия в процессах переноса сохраняется, пока остаются близкими механизмы переноса различных субстанций. [c.490]

    Здесь б — толщина приведенной пленки (I, 28) Л — длина свободного пробега Л С/ — коэффициент переноса (I, 14). Развиваемые соображения применимы в одинаковой степени к переносу вещества, количества движения и энергии. При этом под Л 7 понимаются соответственно коэффициенты диффузии, кинематической вязкости или температуропроводности. Как видно из формулы (II, 5а), поток молекул, поступающий на поверхность, равен свободному молекулярному потоку п V, деленному на сумму двух сопротивлений объемного б/Л и поверхностного 1/а. [c.55]

    Важнейшей проблемой большинства химико-технологи-ческих процессов (ХТП) является перенос субстанции — количества движения (импульса), теплоты, вещества. В химикотехнологических аппаратах (ХТА) теплота, например, может переноситься из одной точки рабочей зоны в другую или к стенкам аппарата вещество, скажем, — от входа к выходу или между различными потоками. Различают продольный (в направлении движения потока) и поперечный переносы субстанции. К первой разновидности среди приведенных выше примеров относится, в частности, перенос теплоты или вещества от входа в ХТА к выходу ко второй — перенос теплоты (вещества, импульса) между потоками фаз или, например, теплоты к стенкам аппарата. Продольный и поперечный переносы связаны между собой. Так, направленное перемещение количества движения (массы, энергии) с потоком вдоль аппарата (т.е. продольный перенос импульса) сопровождается трением (т.е. поперечным переносом импульса к стенкам аппарата). [c.607]


    Таким образом, реализация важнейшей цели многих ХТП (интенсификация нормального поперечного переноса) с неизбежностью приводит к необходимости анализа сопутствующего явления (продольного переноса) — для выявления возникающих при этом эффектов, воздействия на них и учета их при создании эффективных ХТА. Иначе говоря, надо изучать структуру потоков в рабочей зоне аппарата, где происходят поперечный и продольный переносы теплоты, вещества, количества движения. [c.608]

    В разделе 15, кроме переноса тепла и вещества, вкратце рассмотрен также перенос импульса (количества движения), играющий важную роль в формировании структуры потока. [c.177]

    Высший уровень переноса связан с движением потоков. Перемещающиеся массы жидкости (безразлично — капельной или газа) несут с собой и количество движения, и тепло, и вещество и таким образом переносят их. Этот механизм переноса называется конвекцией (или конвективным переносом), причем в данном случае это название едино для переноса и количества движения, и тепла, и вещества. [c.94]

    Перенос вещества вдоль оси потока вследствие молекулярной диффузии весьма невелик он осуществляется в основном за счет движения потока. При ламинарном режиме течения средняя скорость потока равна Ыо/2, поэтому через время х введенное вещество будет находиться на расстоянии Х1 = х+ (ио/2)х от плоскости отсчета х — расстояние от плоскости отсчета при отсутствии движения). После подстановки значения х в уравнение (П. 14) и использования граничных условий было получено выражение для переносимого количества вещества в направлении оси потока  [c.33]

    В приведенных уравнениях отсутствуют выражения для переноса массы в радиальном направлении. Однако разность между кривыми I к = 84,2) и ср в определенной мере характеризует количество движения вещества. Ценность простой модели значительно возросла бы, если бы она позволяла предсказывать продольные профили температуры и степени превращения хотя бы в ограниченной области. Для этого потребовалось бы знать к и [c.220]

    При описании процессов переноса (вещества, теплоты, количества движения, электрического заряда и т. д.) основным является понятие плотности потока данной величины (вектор). Определим плотность потока частиц сорта t следующим соотношением  [c.445]

    Рис. 103 иллюстрирует взаимосвязь между гидравлическим сопротивлением насадки и ее разделяющей способностью. Линейная зависимость числа теоретических ступеней, приходящихся на 1 м рабочей высоты колонны, Пуд для насадки из спиралей (см. табл. 29) от гидравлического сопротивления при турбулентном движении паров показывает, что во всем интервале нагрузок для турбулентного режима между переносом количества движения, тепла и вещества в процессе ректификации существует аналогия. Механизм массообмена при этом остается неизменным. Выше линии изломов с—с (см. рис. 103) пар в виде пузырей барботирует через накопившийся слой жидкости, причем процесс массообмена протекает уже по другому закону [203, 206, 208]. [c.166]

    Зависимость параметра е от важнейших переменных также можно представить в безразмерной форме. Параметр е изменяется в зависимости от нагрузки эта зависимость позволяет четко проследить взаимосвязь между переносом количества движения и вещества, а также учесть влияние давления. [c.167]

    Критерий прандтля представляет собой отношение количества движения, переносимого за счет внутреннего трения, к количеству тепла, передаваемого теплопроводностью. В средах, для которых критерий Прандтля имеет большую величину (например, в мазуте, минеральных маслах и т. п.), процессы переноса за счет внутреннего трения играют более существенную роль по сравнению с теплопроводностью среды. Вещества, в которых критерий Прандтля имеет малую величину, хорошо передают тепло теплопроводностью. Для газов, в которых критерий Прандтля близок к единице, оба процесса переноса сопоставимы по величине. Перенос тепла в неподвижной среде свободной конвекцией характеризуется критерием Грасгофа [c.163]

    Конвективная диффузия. Количество вещества, переносимого в пределах фазы вследствие конвективного переноса вместе с самой средой в направлении ее движения, пропорционально скорости движения среды. Суммарный перенос вещества в результате конвективного переноса и молекулярной диффузии по аналогии с теплообменом называют конвективным массообменом или конвективной диффузией. [c.26]

    Движение жидкостных валиков вместе с лопастями ротора относительно поверхности стенок корпуса аппарата вызывает в них появление направленных циркуляционных токов (см. рис. 109). Это течение способствует переносу количества движения, теплоты, вещества в поперечном сечении валика, т. е. появляется дополнительный источник турбулентности в свободно стекающей жидкости. [c.189]


    На поверхности тангенциального разрыва в связи с ее неустойчивостью возникают вихри, беспорядочно движущиеся вдоль и поперек потока вследствие этого между соседними струями происходит обмен конечными массами (молями) вещества, т. е. поперечный перенос количества движения, тепла и примесей. В результате на границе двух струй формируется область конечной толщины с непрерывным распределением скорости, температуры и концентрации примеси эта область называется струйным турбулентным пограничным слоем. Нри очень малых значениях числа Рейнольдса струйный пограничный слой может быть ламинарным, но на этом сравнительно редком случае течения мы пе останавливаемся. [c.361]

    Диффузия является самопроизвольным процессом, происходящим в результате хаотического теплового движения молекул или ионов растворенного вещества, перемещающихся между оптимальными положениями среди молекул растворителя. Никакого преимущественного направления перемещения для отдельно взятой частицы растворенного вещества в отсутствие какого-либо внешнего поля не существует — она с равной вероятностью может перемещаться в любом направлении. Однако число частиц в некотором объеме раствора, перемещающихся в определенном направлении, равно произведению вероятности перемещения в этом направлении на общее число частиц в рассматриваемом объеме. Поэтому, если рассматривать два соприкасающихся объема раствора с разными концентрациями растворенного вещества С1<Сг, то число частиц, которое перейдет за некоторое время из первого объема во второй, будет меньше, чем число частиц, которое переместится в противоположном направлении. В итоге произойдет перенос определенного количества растворенного вещества из второго объема в первый, т. е. в направлении убывания концентрации. Этот процесс получил название диффузии. [c.324]

    Левич [201 рассматривает вязкий пограничный слой, в котором турбулентное движение не исчезает внезапно, а постепенно затухает по мере приближения к стенке или поверхности раздела фаз при этом коэффициент турбулентной диффузии уменьшается и у самой поверхности становится равным нулю. В большей части вязкого слоя, несмотря на малую величину турбулентных пульсаций, ими переносится большее количество вещества, чем путем молекулярной диффузии. Лишь в пограничном диффузионном слое коэффициент турбулентной диффузии становится меньше коэффициента молекулярной диффузии, причем молекулярный перенос начинает преобладать над турбулентным. [c.103]

    Местная величина этой выталкивающей силы зависит от местной температуры и (или) концентрации. Эта сила записывается как результат уравновешивания инерционных сил н сил вязкости. Справедливо также уравнение неразрывности. Уравнение энергии учитывает наряду с другими видами энергии диффузионный и конвективный перенос тепловой энергии. Наконец, для каждого химического компонента существует уравнение баланса диффузии, конвекции и производства или исчезновения данного компонента в результате химических реакций. Поскольку уравнения теплового и химического переноса вещества зависят от и С, они не разделяются, а входят совместно в последнее уравнение баланса сил и количества движения в виде члена В. Это главный источник сложности механизмов, управляющих течениями, вызванными выталкивающей силой. Такие же трудности возникают и в других случаях, в которых сила зависит от местной плотности, например во вращающемся объеме жидкости. [c.28]

    Законы механики могут быть использованы на двух уровнях для расчета свойств больших количеств вещества. На первом уровне (кинетическая теория, рассматриваемая в данной главе) применяется сравнительно простая процедура математического усреднения. На втором уровне (статистическая механика, гл. 17) используется более абстрактный статистический подход. Из кинетической теории можно вывести законы идеального газа и найти распределение молекул по скоростям на основе очень простой модели газа. Величины теплоемкостей газов могут быть рассчитаны вплоть до предела, где проявляются квантовые эффекты. Таким образом, кинетическая теория помогает нам понять термодинамические свойства с молекулярной точки зрения, а также скорости разнообразных процессов. С помощью понятия поперечного сечения столкновения можно для простой модели рассчитать частоту молекулярных столкновений и скорости переноса массы, энергии и количества движения в газе. [c.259]

    Если газ неоднороден по составу, температуре и скорости, то происходят процессы переноса, которые длятся до тех пор, пока газ не станет однородным. Перенос вещества в отсутствие потока всей его массы называется диффузией. Перенос тепла из областей с высокой температурой в области с более низкой температурой называется теплопроводностью, перенос количества движения из области более высокой скорости в область более низкой скорости вызывает явление вязкости. В каждом случае скорость потока пропорциональна скорости изменения некоторого свойства с расстоянием, т. е. градиенту. [c.276]

    Трудность решения уравнения (1.17) определяется сложностью структуры пограничного слоя, т. е. части атмосферы, испытывающей непосредственное влияние подстилающей поверхности. Различия в рельефе, шероховатости и альбедо - главные причины значительных вариаций условий на ее границе с атмосферой. Кроме того, турбулентное движение состоит из вихрей разных размеров, взаимодействующих и обменивающихся между собой энергией и количеством движения. Небольшие вихри играют очень важную роль в диссипации энергии и вещества, поэтому необходимо принимать во внимание даже самые мелкие из них. Однако при учете всех этих особенностей аналитическое решение уравнений материального баланса типа (1.17) становится нереальной задачей даже для случая хи.мически инертных компонентов (что позволяет пренебречь членом Д, в правой части). Поэтому для решения уравнения с учетом многочисленных химических реакций приходится прибегать к существенным упрощениям, в первою очередь - за счет членов, описывающих адвективный и турбулентный перенос. Некоторые прие.мы такого упрощения будут приведены в последующих разделах. [c.22]

    Структура отдельных слагаемых уравнений (1.1) и (1.22) совпадает вследствие аналогии элементарных законов переноса. Так, члены, содержащие вторые производные по координатам, соответствуют градиентным законам переноса количества движения [закон вязкого трения Ньютона (1.2)] и вещества [закон молекулярной диффузии Фика (1.17)]. Второе слагаемое уравнения (1.22) получено из анализа конвективного переноса целевого компонента. Аналогичный по структуре член уравнения Навье — Стокса также соответствует переносу количества движения вследствие конвективного перемещения жидкости. [c.18]

    Для газов и паров v > и значение критерия Прандтля близко к единице. Это означает, что для таких сред должно существовать подобие между процессами переноса количества движения и диффузионным переносом вещества. В тех зонах потока, где основную роль играет молекулярное трение, преобладает перенос целевого компонента за счет молекулярной диффузии. Области инерционного течения газов соответствует преимущественный конвективный перенос вещества. [c.21]

    Связь коэффициента теплоотдачи а с толщиной модельного приграничного слоя устанавливается выражением (6.14). Сходные понятия — интенсивность переноса импульса и толщина ламинарного слоя 5и — используются в гидравлике. Это позволяет выявить аналогию в переносе соответствующих субстанций количества движения (импульса) и теплоты, а если шире — то и вещества при массопереносе. [c.487]

    Турбулентные пульсации, как это отмечалось выше, осуществляют перенос количества движения от одного слоя жидкости к другому. Одновременно с переносом количества движения пульсирующие глобулы осуществляют перенос энтальпии и массы целевого компонента. Перенос вещества турбулентными пульсациями вследствие их статистической беспорядочности аналогичен переносу за счет молекулярной диффузии, обусловленному хаотическим тепловым движением молекул. Наличие градиента концентрации в турбулентном потоке вызывает направленный поток примеси за счет турбулентной диффузии  [c.29]

    Таким образом, наряду с химическими превращениями химическая технология использует многочисленные явления и процессы нехимического характера, требующие определенных способов организации и осуществляемые в соответствующих аппаратах и процессуально-технологических схемах. Протекание таких процессов (собственно химических — тоже, конечно) в той или иной мере связано с переносом какой-либо субстанции — количества движения (импульса), теплоты, вещества (массы), иногда нескольких субстанций одновременно. Этот перенос характеризуется (вызывается или сопровождается) изменением технологической ситуации (параметров процесса), в общем случае — во времени в рассматриваемой точке аппарата, а в самом аппарате — от одной точки к другой, в более простых случаях — только во времени или только от точки к точке. [c.38]

    Нередко теплопереносу сопутствует перенос вещества (из одной системы в другую, из одной фазы в другую) как правило, теплоперенос связан с переносом количества движения (импульса) — эту связь учитывают при описании процессов теплопереноса. [c.470]

    Аналогия в процессах конвективного переноса количества движения и теплоты, а также вещества [c.487]

    Использование в качестве системы отсчета растворителя в целом позволяет учесть сольватационный перенос растворителя с ионами, не вводя при этом никаких В более ранних работах для оценки переноса растворителя при движении ионов в раствор вводили какое-либо нейтральное вещество (например, сахар), молекулы которого, как предполагалось, не входили в состав сольватных оболочек ионов, а потому, не должны были перемещаться. В этих условиях по изменению концентрации нейтрального вещества в приэлектродном пространстве (в методе Гитторфа) можно было рассчитать количество растворителя, которое было перенесено ионами, и оценить так называемые истинные числа переноса. Этот способ оценки истинных чисел переноса был предложен В. Уошборном. Недостаток метода Уошборна [c.73]

    Вполне очевидно, что упрощенную модель процесса стабилизации пламени желательно описать с точки зрения как аналитических, так и экспериментальных исследований. Предлагаемая упрощенная модель показана на фиг. 11. Наши предположения в данном случае носят предварительный характер. В их основу положены количественные данные, результаты наблюдений следов трассирующих частиц в холодном и горячем потоках и шлирен-фотографии. К сожалению, наблюдения производились на различных лабораторных установках, поэтому сравнивать результаты приходится с большой осторожностью. При разработке предлагаемой модели было установлено следующее I) поток является трехмерным, аксиально симметричным 2) как первичный, так и вторичный потоки находятся в движении 3) эти два потока движутся в противоположных направлениях 4) первичный поток является дозвуковым, вторичный поток — звуковым или сверхзвуковым 5) химический состав этих двух потоков может быть неодинаковым 6) температуры двух потоков приблизительно одинаковы (но не обязательно) 7) плотности потоков примерно одинаковы 8) зона смешения является турбулентной 9) протекают процессы переноса вещества, количества движения и энергии 10) в обоих потоках имеется некоторая начальная турбулизация. [c.326]

    Учитывая большое разнообразие видов переноса в процессах тепломассообмена (перенос энергии, количества движения, вещества, энергии турбулентных вихрей) и само разнообразие механизмов переноса энергии (электромагнитное излучение, конвекция, теплопроводность, контактная теплопередача), для выработки единых подходов и упрощения построения математических моделей целесообразно применить положения обобщенного термодинамического подхода, в общих чертах сформулированного в работах Б. Н. Петрова [5.31]. Для обьектов с сосредоточенными параметрами развитие этого метода проведено в работах В. Б. Яковлева [5.32]. Применительно к объектам с распределенными параметрами принципы обобщенного термодинамического подхода сформулированы В. Г. Лисиенко [5.22]. При таком подходе удается найти общность в написании основных уравнений для моделей различных видов переноса вещества и энергии, основываясь на известном принципе аналогии. Тем самым существенно облегчается и ускоряется процедура поиска технологии и структуры математических моделей самых различных процессов, и особенно создаются предпосылки для создания одного из самых современных методов расчета процессов тепломассообмена — динамического зонально-узлового метода (ДЗУ-метода), в котором органически сочетается детализированное моделирование в динамике всех видов теплопереноса с синхронным расчетом газодинамики процессов (см. п. 5.5). [c.411]

    Гидравлическое сопротивление характеризуется трением о поверхность насадки, разностью давлений на ее лобовой и кормовой частях и энергией, расходуемой на турбулиза-цию газового следа. В ламинарной области гидравлическое сопротивление обусловлено трением, которое в свою очередь определяется переносом количества движения по направлению к поверхности тела с увеличением трения возрастает и скорость переноса вещества. Поэтому при работе в ламинарной области желательно применять тела с высоким коэффициентом сопротивления. Шаровая форма тел по сравнению с цилиндром и вытянутым эллипсоидом эффективнее их и имеет в 2 раза больший коэффициент сопротивления. [c.481]

    Наличие пульсационной скорости в турбулентном ядре потока приводит к интенсификации процессов переноса количества движения, теплоты и вещества. [c.21]

    Согласно уравнению (ХХ.З), знак и величина переноса определяются теплотой растворения газа в перегородке. Если эта теплота равняется нулю, то переноса пет. Теплота растворения относится к общему понятию, играющему большую роль в термодинамике необратимых процессов, к так называемой теплоте переноса . Так определяют тепло, переносимое при переходе одного моля (дополнительно к энтальпии самого этого моля). В рассмотренном переносе через перегородку моль растворяется по одну сторону перегородки (при этом выделяется теплота растворения), а затем этот моль выделяется по другую сторону перегородки (при этом поглощается теплота растворения). В результате происходит перенос количества тепла, равного теплоте растворения. Таким образом, эффект переноса при стационарных процессах зависит от пути переноса, в отличие от того, что имеет место при обратимых процессах. В случае, если теплота растворения в перегородке равна нулю, но в перегородке имеются весьма малые поры или капилляры, то при наличии градиента температуры возникает также перенос вещества, который носит название эффузии. Этот эффект возникает в том случае, когда диаметр путей в перегородке существенно меньше длины свободнр-го пробега молекул. Поэтому такой эффект просто осуществляется при помощи вакуума. При движении вещества в описанной выше перегородке молекулы не сталкиваются друг с другом, а сталкиваются только со стенками капилляров. В результате молекула в перегородке не может не- [c.538]

    Технологическую основу БТС составляет процесс культивирования микроорганизмов — ферментация. При этом биофаза потребляет продукты питания — минеральную питательную среду и субстрат, перерабатывает их клеткой и выделяет в среду метаболиты. В результате обмена веществ происходит синтез внутриклеточных веществ, рост клетки (увеличение биомассы) и ее развитие (морфологические и физиологические изменения). Рост и развитие популяции микроорганизмов являются результатом сложнейшей совокупности физиологических, биохимических, генетических и других внутриклеточных процессов. Кроме того, важное место занимают процессы физической природы — перенос массы, энергии, количества движения из окружающей среды к клеткам и обратно. Таким образом, процесс ферментации можно рассматривать как определенным образом организованное развитие популяции микроорганизмов во взаимодействии с окружающей средой (ферментационной средой). Ферментационная среда, содержащая микробные клетки, компоненты минерального питания, субстрат, продукты клеточного метаболизма представляет собой многофазную систему, в которой протекают физиолого-биохимические и физико-химиче-ские процессы. К особенности данной среды относится сложный характер взаимодействий между ее составляющими. [c.51]

    Ори интенсивном испарении жидкости в движущуюся парогазовую среду на интенсйй-нооть тепло- и массопереноса могут оказывать существенное влияние полупроницаемость поверхности раздела фаз, приводящая к возникновению конвективного (стефанова) поперечного потока парогазовой смеси, и перестройка профилей продольной скорости, температуры и парциальных давлений компонентов смеси, вызванная переносом количества движения и энтальпии поперек бинарного пограничного слоя суммарным (диффузионным и конвективным) потоком вещества. Рассматриваются методы обобщения результатов экспериментальных исследований и теоретических (численных) решений задачи о тепло- и массообмене при интенсивном испарении жидкостей с учетом влияния указанных факторов. На основании анализа опытных и теоретических данных рекомендуются зависимости для безразмерных коэффициентов тепло- и массоотдачи при этих условиях. Лит. — 30 назв., ил. — 7, табл. — 1. [c.214]

    Система уравнений взаимосвязанного переноса лпиейпа. Каждый из потоков количества движения /ь вещества /2 и энергии /з зависит от трех движущих сил и матрицы коэфф пптептоз переноса Life  [c.237]


Смотреть страницы где упоминается термин Перенос вещества количества движения: [c.468]    [c.197]    [c.65]    [c.112]    [c.53]    [c.116]    [c.122]    [c.486]   
Процессы в кипящем слое (1958) -- [ c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Аналогия в процессах конвективного переноса количества движения и теплоты, а также вещества

Количество вещества

Количество движения

Перенос количества движения, аналогия с переносом тепла и вещества



© 2025 chem21.info Реклама на сайте