Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы характер связи

    В кристаллах типичных металлов характер связи между частицами определяется в первую очередь тем, что металлами являются те (и только те) элементы, в атомах которых имеются слабо связанные электроны. Именно этим определяется металличность. Все свойства, характерные для металлов, вызываются наличием таких электронов. В кристалле слабо связанные электроны более или менее легко переходят от одного атома к другому. В результате частицами, связанными с определенным местом в решетке, являются не нейтральные атомы, а положительные ионы, образующиеся из атомов металла после потери ими слабо связанных электронов. Электроны же эти, связываясь то с одним, то с другим атомом, вращаясь вокруг ядра то одного, то другого атома, постоянно переходя от одного атома к другому, осуществляют этим связь между ними. Такая связь получила название металлической, а образующие ее электроны, в соответствии с большой подвижностью их, называются электронным газом. [c.126]


    Рассмотренные ранее процессы взаимодействия молекул воды с ионами и атомами в кристаллогидратах ( 53) показывают, что эти молекулы могут подобным же образом взаимодействовать и с ионами или атомами, содержащимися в поверхностном слое кристалла или стекла. Взаимодействие может приводить к образованию более или менее прочной донорно-акцепторной связи и водородной связи или ионо-дипольной связи, причем наряду с типичными случаями здесь возможны и переходные формы взаимодействия, когда деление соединений по характеру связи становится условным. Такое взаимодействие, связывая молекулу воды с поверхностью кристалла, вызывает преимущественную ориентацию ее относительно поверхности, способствуя образованию упорядоченного расположения молекул относительно поверхности. Рассмотренное взаимодействие может вместе с тем вызывать дополнительную поляризацию молекул воды, что повышает их способность связывать другие молекулы воды, расположенные дальше от поверхности, увеличивая полярность этих молекул, но уже в меньшей степени. Это в свою очередь усиливает связь с ними следующих молекул воды, ио еще в меньшей степени. [c.379]

    Основные характеристики некоторых, наиболее широко употребляемых полупроводниковых материалов приведены в табл. 34. Общим свойством всех указанных материалов является ковалентный или близкий к ковалентному характер связей, реализуемых в их кристаллах. Ширина запрещенной зоны зависит от энергии этих связей и структурных особенностей кристаллической решетки полупроводника. У полупроводников с узкой запрещенной зоной, таких, например, как серое олово, черный фосфор, теллур, заметный перенос электронов в зону проводимости возникает уже за счет лучистой энергии, в то время как для полупроводниковых модификаций бора и кремния требуется довольно мощный тепловой или электрический импульс, а для алмаза II — даже облучение потоками микрочастиц большой энергии или у-облучение. Лишь некоторые из полиморфных форм кристаллов обладают полупроводниковыми свойствами. Так, полупроводниковый эффект наблюдается лишь у одной из трех возможных полиморфных форм кристаллических фосфора и мышьяка и лишь у двух из четырех кристаллических модификаций углерода. [c.311]

    Наличие свободной валентности на иоверхности кристалла является причиной адсорбционного взаимодействия между кристаллом и молекулами в газовой (или жидкой) фазе. Характер связи может быть одним из следующих 1) при затягивании валентного электрона адсорбирующегося атома в зону [c.367]


    Энтропия ниже в ковалентно связанных твердых веществах с проч-Ш.1МИ, пространственно направленными связями, чем в кристаллах с частично металлическим характером связи  [c.63]

    Впрочем, трудно вполне четко разграничить кристаллы по характеру связи, так как, во-первых, наряду с типичными формами связей в кристаллах встречаются переходные между ними и, во-вторых, в кристаллах, состоящих из трех или большего числа элементов, характер разных связей может быть неодинаковым в одном и том же кристалле. [c.124]

    В кристаллах, которые образуются с помощью ковалентных связей, частицами, их образующими и закономерно расположенными в пространстве, служат нейтральные атомы, связанные между собой ковалентной связью. Классическим примером таких кристаллов является алмаз. В нем каждый атом углерода связан с четырьмя другими углеродными атомами. Атомы образуют непрерывную пространственную решетку, причем связь между ними неполярная. Кристаллам алмаза по характеру связи подобны кристаллы карборунда, хотя в этом случае уже сказывается неко торая полярность связи. [c.125]

    Исследование внутренней структуры этих кристаллов показы-пает, что характер связи молекул воды с ионами может быть различны. (даже для молекул воды, входящих в состав данного кристаллогидрата). Молекулы воды могут связываться как с катионами, так и с анионами они могут также входить в решетку кристалла в промежутки между ионами или слоями их, взаимодействуя одновременно с двумя или тремя ионами. [c.141]

    Однако многие свойства материала, как, наиример, механическая прочность, могут в большей степени зависеть от характера связи между отдельными кристаллами, чем от свойств самих кристаллов. Так, сильное различие в прочности мела, известняка и мрамора обусловлено именно различием в структуре самой породы. [c.144]

    Оц и Оз, N2 и т. д.). В кристаллических структурах неметаллов в большинстве случаев также можно выделить отдельные группировки атомов, подобные молекулам (Ji , Р4, Аз, За). Этим структурам присуще следующее общее свойство число атомов соседей, с которым связан каждый атом в кристаллической решетке, равно валентности элементов. Так, атомы йода в кристаллах йода связаны попарно, и кристаллический йод подобно жидкому и газообразному состоит из двухатомных молекул кристалл серы построен из циклических молекул 83, в которых каждый атом серы связан с двумя ближайшими соседями. В структуре алмаза выделить какие-то группировки атомов, подобные молекулам, нельзя, тем не менее каждый атом углерода в структуре алмаза связан с четырьмя ближайшими соседями. Связь в кристаллических решетках неметаллов носит ковалентный (атомный) характер и осуществляется общими для двух связываемых атомов электронными парами. [c.108]

    Рассмотрим роль гидратации в процессе растворения ионного кристалла. Энергию связи ионов в кристалле характери- [c.177]

    Анизотропия й -фактора определяется кристаллическим полем, создаваемым ионами или атомами, окружающими парамагнитный ион. Поэтому парамагнитные спектры кристаллов являются средством изучения локальной симметрии парамагнитного иона, входящего в решетку диамагнитного вещества. -Фактор содержит также информацию о характере связи парамагнитного атома (иона) с окружающими его частицами. [c.206]

    Изучение анизотропии кристаллов дает ценные сведения об их внутреннем строении и характере связей. Проявление веществом анизотропии доказывает, что его структура представлена правильным пространственным расположением частиц. [c.160]

    С этой точки зрения ферромагнетизм можно рассматривать как явление, уменьшающее ковалентное взаимодействие Зй-электронов атомов Fe, Со или N1 из-за параллельной ориентации их спинов. Таким образом, повышенная кинетическая энергия, которую приобретают эти электроны, компенсируется ослаблением их взаимодействия как друг с другом, так и с атомными ядрами. При этом усиливается металлический характер связи в рассматриваемых кристаллах. При температуре, близкой к абсолютному нулю, практически все неспаренные [c.302]

    Исследования твердых веществ подтвердили, что частицы в кристаллах (атомы, ионы или молекулы) располагаются закономерно, образуя пространственную кристаллическую решетку. Вопросы внешней формы кристаллов и геометрические закономерности расположения частиц в пространстве составляют предмет геометрической кристаллографии. В физической химии кристаллы изучаются главным образом с точки зрения выяснения зависимости свойств и формы кристаллов от характера связи между частицами, образующими кристалл. [c.47]

    Однако не всегда кристаллы обладают структурой, отвечающей максимальному координационному числу, так как соотношение радиусов ионов является не единственным фактором, обусловливающим величину координационного числа и вместе с ним определенную структуру. Во многих случаях существенное влияние на взаимодействие и на характер связи между частицами в кристалле оказывает поляризуемость ионов. [c.51]


    Кристаллогидраты солей различаются и по количеству молекул кристаллизационной воды, удерживаемой центральным ионом — комплексообразователем, и по характеру связи молекул воды с другими частицами, составляющими кристалл. [c.21]

    Несмотря на явную сомнительность пренебрежения электронно-ионным взаимодействием, теория свободного электрона в состоянии объяснить многие свойства металлов. Так, ненаправленный характер связей ионов с электронным газом в металлических кристаллах объясняет их высокую ковкость и тягучесть. По этой же причине чистые металлы должны кристаллизоваться преимущественно в структурах плотнейших упаковок. И действительно, большая часть металлов имеет или гексагональную, или гранецентрированную кубическую плотнейшую упаковку, аналогичную приведенным на рис. III.1. [c.71]

    Методы экспериментального и теоретического исследования кристаллов в значительной мере переносятся на аморфные твердые тела, хотя построение теории последних затруднено нерегулярностью их структуры. Свойства, определяемые главным образом характером связи между частицами, в большой степени являются общими для кристаллических и аморфных тел. Это относится, прежде всего, к транспортным свойствам. [c.172]

    Свойства кристаллических веществ определяются в первую очередь характером связей между о6раз гющими их частицами. По виду частиц и по характеру связи между ними можно выделить четыре типа кристаллов атомные, металлические, ионные и молекулярные. [c.126]

    Металлы с кубической гранецентрированной и гексагональной решетками в твердом состоянии. Рентгенографические и нейтронографические исследования показывают, что металлы, обладающие в твердом состоянии плотной упаковкой атомов, после плавления сохраняют ее. Это объясняется тем, что при переходе в жидкое состояние электронная конфигурация этих металлов и характер связи не изменяются. Действительно, атомы алюминия при конденсации металлического пара теряют внешний Зр-электрон. Образовавшиеся ионы А1+, обладая 2р 35 -конфигурацией, упаковываются в гранецентрированную кубическую решетку с параметром а = 4,04 Л. При плавлении электронная структура ионов не изменяется и плотная упаковка сохраняется. Незначительное уменьшение координационного числа связано с усилением трансляционной составляющей теплового движения атомов. Бериллий (конф. 15 2з ) и магний (конф. 2р 35 ) обладают высокими вторыми ионизационными потенциалами, поэтому при образовании кристалла их атомы отдают лишь один 5-электрон. Оставшийся второй -электрон придает сферическую форму однозарядным ионам, которые образуют в кристалле гексагональную решетку. При переходе в жидкое состояние электронная конфигурация ионов этих металлов и плотная упаковки существенно не изменяются. [c.176]

    Говоря о химических веществах мы различаем три агрегатных состояния, в которых они могут находиться твердое, жидкое и газообразное. Условия перехода из одного состояния в другое зависят от характера связи между частицами вещества, описанного в предыдущих параграфах. При этом надо иметь в виду, что переход из одного агрегатного состояния в другое может сопровождаться изменением самого типа связи. Например, исчезает металлическая связь при испарении металла в результате плавления неметаллических и полупроводниковых атомных кристаллов возникает металлическая проводимость жидкости и т, д. [c.148]

    Не забывайте, что расчеты, основанные на сопоставлении ЭО, весьма приближенные. Поскольку значения ЭО атомов получены без учета электростатических сил, действующих в кристалле, то использование ЭО для оценки характера связи в кристаллах. ... [c.202]

    Следует также отметить высокие температуры плавления титана и его аналогов, что свидетельствует о металло-ковалентном (а не чисто металлическом) характере связей в кристаллах. При этом температура плавления в ряду Ti—Zr—Hf возрастает в противоположность закономерности, наблюдающейся в главной подгруппе (в ряду С—Si—Ge—Sn—Pb). [c.235]

    Физические свойства веществ определяются их внутренним строением, характером связей, возникших между атомами, и их пространственным расположением. Одни и те же атомы, расположенные в разном геометрическом порядке (кристаллы) или соединившиеся в молекулы различного состава, образуют простые вещества с различными физическими свойствами при почти одинаковых химических свойствах. Это явление называется аллотропией. [c.10]

    Обычно ионные кристаллы отличаются небольшой широтой области гомогенности (1—5%), однако к таким кристаллам уже нельзя полностью применять закон постоянства состава. Значительно больше широта области гомогенности у соединений металлов-с углеродом, бором, кремнием, азотом, водородом и кислородом, сохраняющих до известной степени металлический характер связи (электрическую проводимость). [c.113]

    Анализ рентгенограмм позволяет выяснить характер распределения электронной плотности в кристалле. Таким путем узнают, являются ли исследуемые кристаллы ионными, ковалентными или молекулярными. На рис. 102 показано распределение электронной плотности в кристалле Характер расположения кривых равной электронной плотности (заряд электрона на единицу объема) свидетельствует о преимущестЕенном проявлении ионной связи. Минимум электронной плотности можно считать границей между атомами [c.152]

    Определить характер связей в кристаллах MgS, ZnSe и InSb. В каком случае связь имеет более полярный характер  [c.51]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Для неорганических веществ в кристаллическом состоянии возможности расчета температурной зависимости свойств на основе методов сравнения значительно более ограничены, чем для газов. Здесь сказывается прежде всего больщее многообразие особенностей внутреннего строения кристаллов по сравнению с газами и большее различие характера связи между частицами. Разность значений аналогичных величин для однотипных веществ в кристаллическом состоянии большей частью существенно зависит от температуры. В связи с этим метод разностей в общем случае не может быть рекомендован. Отношения аналогичных величин, вьь ражаемые уравнениями (111,26), (111,28) и другими для достаточно однотипных веществ, мало зависят от температуры. Но это относится преимущественно к высокотемпературным составляющим энтропии и энтальпии (и соответственно других функций), а не к значениям их, отсчитываемым от О К. [c.126]

    Тип кристалл иче-скоу1 решетки Структурная частица I . Характер связи мелду структурными частицами 1 1 1р[)ЧН0сть связи Температура плавления Г I Электрическая проводимость 1 Пример 1  [c.104]

    Пожалуй, наиболее перспективным и важным направлением исследований неорганических веществ на структурном уровне является изучение закономерностей, обусловливающих специфику химических связей в монокристалле при различных способах заполнения и уплотнения узлов кристаллической решетки. Значение этих исследований в конечном счете определяется необходимостью получения твердых тел, свойства которых были бы обусловлены не столько характером связей между монокристаллами в поликристаллите, сколько химическим строением гигантского монолита — монокристалла с любым заданным заполнением и уплотнением узлов кристаллической решетки вплоть до идеального кристалла как единой замкнутой квантово-механической системы с минимумом свободных валентностей на поверхности. Идеал — всегда есть цель, к которой приближается реальность. И ничего нет фантастического в том, что касается создания макромолекул, полностью идентичных обычным молекулам с полным внутренним взаимным насыщением валентностей. Но это — только одна задача она диктуется требованиями создания тел с особой механической, жаро- и противокоррозионной прочностью. Сотни других задач связаны с получением тел с заданным числом и характером дефектов решетки решение этих задач позволит получать твердые тела с нужными химическими и физическими свойствами. [c.274]

    Величина кристаллов, образовавшихся из насыщенного раствора или расплава, зависит от соотношения скорости зарождения центров кристаллизации и линейной скорости роста кристаллов. Чем больше скорость образования центров кристаллизации и чем соответственно меньше линейная скорость кристаллизации, тем меньше размер кристаллов поликристаллического твердого тела. Эти закономе рности полностью относятся и к процессу электрокристаллизации металотов. Многочисленными исследованиями установлено, что все факторы, способствующие увеличению катодной поляризации, ведут к росту скорости зарождения центров кристаллизации. Такая связь между поляризацией и скоростью образования зародышей объясняется тем, что энергия активации, необходимая для образования зародыша, значительно больше энергии, затрачиваемой на рост уже имеющихся кристаллов. В связи с тем, что при электролизе изменяются 1И число и характер образующихся кристаллов, истинная плотность тока весьма заметно отличается от плотности тока, рассчитанной по геометрической поверхности электрода. [c.367]

    Ионный кристалл АХ образован ионами А+ и X", которые удерживаются вместе электростатическими (кулоновскими) силами. В случае идеальной ионной связи валентный электрон переходит от одного атома к другому (в кристалле Na I, например, электрон с 35-уровня натрия переходит на Зр-уровень хлора). Электронные оболочки образующихся ионов заполнены. Заметим, однако, что в действительности полного перехода электрона от одной частицы к другой не происходит, электронные оболочки частиц в ионных кристаллах все же несколько перекрываются, что означает частично ковалентный характер связи. Определяющими являются все же электростатические взаимодействия, благодаря которым ионные кристаллы обладают высокой энергией связи, прочностью, высокой температурой плавления. [c.176]

    ZnS) — при гк /гА = 0,41—0,23 3 — пригк //"а = 0,23—0,15. Приведенные здесь координационные числа приближенные. Надо учитывать, что поляризация ионов, их поляризующее действие и другие свойства могут существенно влиять на характер связи между ними, поэтому есть много отступлений от указанных чисел. Уже в кристаллах типа сфалерита (или вюрцита) связь ион но-ковалентна я. Координационное число 3 в ионных кристаллах вообще не реализуется. [c.129]

    Если число атомов в молекуле всегда целочисленное, то и состав молекулярных кристаллов должен выражаться химическими формулами с целочисленными индексами. Иное наблюдается при образовании твердых веществ с координационными решетками. В этих случаях при огромном количестве взаимодействующих атомов А может оказаться другое число атомов В. Отсюда возникает нецелочисленность стехиометрических индексов в формулах таких веществ. Это легко выполняется, если характер связи в решетке близок к ковалентному или металлическому. В типично ионных решетках отклонение от целочисленного значения индексов затрудняется необходимостью полной компенсации зарядов ионов противоположных знаков. Это значит, что если в твердом состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов, строения возникающей фазы и характера связи атомов в ней состав соединения и его свойства могут сильно зависеть от путей синтеза, т. е. могут образовываться соединения переменного состава в пределах гомогенности фазы. Такими оказались многие ранее считавшиеся постоянными соединения фосфиды, арсениды, селениды, сульфиды, оксиды, галиды и др. В случае веществ с координационными решетками следует пользоваться термином формульный вес вместо молекулярный вес, так как молекул в таких соединениях нет. [c.137]

    Характер связи между частицами кристалла Силы меж-мо екуляр-ного взаимодействия (в т. ч. водородные СВ 1 1И) Электростатические ионные связи Ковалентные связи Металлическаи связь между ионами метал лов и свобод ными электронами [c.687]

    Направление скольжения практически всегда совпадает с направлением вектора решетки в плотноупакованной области, т. е. с направлением [ПО] в г. ц. к. металлах, [111] в о. ц. к. металлах и [2110] в гексагональных металлах. В ионных кристаллах направление скольжения всегда совпадает с направлением, вдоль которого лежат заряды одного знака, т. е. с направлением [ПО] в структурах типа Na l и [100] в кристаллах типа s l. В интерметаллических же соединениях (со слабо выраженным ионным характером связи) это правило в одних случаях выполняется, а в других нет. [c.177]


Смотреть страницы где упоминается термин Кристаллы характер связи: [c.322]    [c.125]    [c.140]    [c.81]    [c.493]    [c.98]    [c.159]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.298 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Виды элементарных ячеек кристаллов по характеру частиц и энергиям связей

Рассмотрены структурно-химические исследования гетероциклических (шестичленных) соединений, многие из которых являются биологически активными веществами. Проанализированы конформации циклов, влияние заместителей на характер связей в циклах и их конформацию, упаковка молекул в кристалле, связь строения этих веществ с их свойствами Технический редактор М. С. Лазарева

Связь характер

ТЕРМОДИНАМИЧЕСКИЕ И ТЕРМОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ Сирота. Термодинамические свойства кристаллов в связи с характером и энергией межатомного взаимодействия

ФИЗИЧЕСКИЕ СВОЙСТВА кристаллов И ХАРАКТЕР ХИМИЧЕСКОМ СВЯЗИ Ильменков, Д. Н. Наследов, Ю. С. Сметанникова, В. К. Ярмаркин. О состоянии железа в антн.чониде индия



© 2025 chem21.info Реклама на сайте