Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо электронная структура

    Второй подход состоит в определении анизотропии д-фактора в тех системах, где электронная структура позволяет пользоваться уравнениями, базирующимися на д-факторах [например, уравнением (12.23)], т.е. если д а х- К сожалению, время жизни электронных спиновых состояний. приводящее к хорошо разрешенному спектру ЭПР, обусловливает плохо разрешенные спектры ЯМР, и наоборот. В статье [8] описаны такие комплексы железа(П1), для которых можно снять и спектр ЭПР, и спектр ЯМР. Результаты сопоставления измеренных величин восприимчивости с рассчитанными из -факторов и линейность кривой зависимости Ду от 1/Т позволяют предположить, что д-факторы приемлемы для оценки псевдоконтактного сдвига в этой системе. [c.174]


    Тогда в спектре ЭПР феррицианида калия следовало бы ожидать одну широкую линию. В действительности же обнаруживается одна узкая линия. Значит, в группе Ре(СМ)3 связи не могут быть только ионными. Наличию одного неспаренного электрона отвечает такая электронная структура валентных оболочек атома железа  [c.57]

    Элементы-металлы входят в состав всех групп периодической системы, кроме нулевой. Химические и физические свойства простых веществ, образованных элементами-металлами, — собственно металлов — имеют ряд особенностей. Металлический блеск, высокая тепло- и электропроводность определяются особенностями электронной структуры атомов металлов. Интересно, что электропроводность различных металлов сильно различается. Это можно легко показать, включив в электрическую цепь с гальванометром поочередно медную, железную и, например, нихромовую проволоку (сплав никеля и хрома). Проволока из меди обладает столь высокой электропроводностью, что гальванометр зашкаливает . Включение в тех же условиях в цепь проволоки из железа дает лишь слабое отклонение стрелки гальванометра. В случае нихромовой проволоки отклонение стрелки гальванометра незаметно — так велико электрическое сопротивление сплава нихром (на этом основано его использование в электронагревательных приборах). [c.252]

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]


    Электронные структуры атома железа и ионов Ре - и Ре для Зс1- и 45-орбиталей будут  [c.209]

    Электронные структуры Зс1- и 45-орбиталей атома железа и ионов Ре + и можно изобразить так  [c.260]

    Какие соединения образуют железо, кобальт и никель с окисью углерода Как объяснить различный состав этих соединений, исходя из электронных структур незаряженных атомов Fe, Со и Ni  [c.264]

    Железо образует пентакарбонил Fe (СО) 5 — жидкость с температурой затвердевания —21 С и температурой кипения 103°С. Это соединение имеет конфигурацию тригональной бипирамиды с длиной связи Fe—С, равной 184 пм его основная электронная структура [c.485]

    Электронные структуры и степени окисления железа, кобальта, никеля и платиновых металлов [c.543]

    Электронные структуры железа, кобальта, никеля и платиновых металлов указаны в табл. 19.1 эти структуры соответствуют энергетическим уровням, приведенным на рис. 5.6. Следует отметить, что каждый из рассматриваемых атомов имеет два внешних электрона в случае железа, кобальта и никеля это электроны на 45-орбитали, для рутения, родия и палладия — на 5 -орбитали для осмия, иридия и платины — на б5-орбитали. Следующая внутренняя оболочка у этих элементов не завершена Зй-орбиталь (или соответственно 4d- и 5d- [c.543]

    Электронные структуры железа, кобальта, никеля и платиновых металлов [c.544]

    В каких наиболее характерных валентных состояниях находятся переходные металлы в образуемых ими соединениях Приведите электронные структуры железа, кобальта и никеля в свойственных им валентных состояниях. [c.582]

    Изучая в начале данного курса строение атомов различных элементов, мы сосредоточивали внимание на свойствах отдельных, изолированных атомов — их электронной структуре, энергии ионизации, атомных и ионных радиусах и т. п. Попытаемся теперь разобраться в особенностях строения и свойств больших групп атомов, расположенных в непосредственной близости друг к другу. Известно, например, что магнитная восприимчивость изолированного атома или иона определяется наличием в его электронной оболочке неспаренных электронов (см. гл. 5). Однако й том случае, когда поблизости друг от друга находится большая совокупность атомов, как это имеет место в твердых металлах, взаимодействие между атомами способно существенно изменить их важнейшие свойства. При наличии в кристаллической решетке железа достаточно большого числа атомов этот металл приобретает ферромагнитные свойства, которыми не обладают ни соединения железа, ни растворы, содержащие его ионы. Учитывая эту особенность твердых веществ, обусловленную взаимодействием их атомов, рассмотрим расположение атомов в кристаллической решетке твердых металлов и познакомимся с теорией взаимодействия их электронов. Кроме того, в данной главе мы обсудим еще строение и свойства сплавов, так как они довольно близки в этом отношении к чистым металлам. [c.387]

    В образующемся по реакции (4) комплексе в обоих составляющих его комплексных ионах реализуется устойчивая 18-ти электронная структура вокруг атома железа. Образование иоиа [Ре(СО)4]г маловероятно, так как в этой частице должна быть незавершенная 14-ти электронная структура вокруг атома железа. [c.107]

    Так, для электронных структур металлов и ионов подгруппы железа характерны следующие недостроенные d-орбитали Fe — 3d , Со и Со + (СоО) — [c.171]

    Из данных табл. 2,6 видно, что электронная структура молекул ингибитора в свободном состоянии значительно отличается от структуры в адсорбированном состоянии. Изменение заряда атома азота в молекуле свободного амина по сравнению с зарядом в комплексе свидетельствует о том, что в комплексе заряд перераспределяется на атом железа, что соответствует донорно-акцептор-ной связи, в которой амин в отличие от хромат- и ванадат-ио нов является донором электронов. Этот вывод подтверждается и экспериментально по изменению контактной разности потенциалов при адсорбции аминов на железе (табл. 2,7). [c.76]

    Однако из всего многообразия изучешхых систем в конечном итоге отдается предпочтение в настоящее время значительно меньшему числу элементов и их сочетанию - это кобальт, никель, молибден, реже вольфрам, платина, ванадий, железо. Выбор подобных элементов определяется многими факторами, положительно характеризующими их мак с позиций их электронной структуры, так и свойств их солей и соединений, определяющих и технологичность операций создания катализатора, и применимость в практике созданной каталитической системы. Итак, круг элементов, используемых в синтезе катализатора гидрообессеривания нефтяных остатков, значительно сузился. [c.94]

    В статье [J. Amer. hem. So .. 97, 6714 (1975)] исследуют ряд квадратно-пирамидальных комплексов железа(П1) с набором N4S донорных атомов (сера — аксиальный донор). Электронная структура этих комплексов сильно [c.311]

    При определенных условиях наблюдается испускание и поглощение гамма-квантов атомными ядрами ряда более тяжелых элементов, начиная с железа, без заметного изменения их энергетического состояния за счет энергии отдачи. Последняя распределяется между всеми атомами твердого вещества и, таким образом, снижается до величины, значительно меньшей очень малой естественной ширины возбужденных уровней, составляющей всего 10-10—10- 5 величины энергии возбуждения, и это позволяет наблюдать резонанс излучателя и поглотителя гамма-квантов — эффект Мёссбауэра. Важно то, что резонансная энергия гамма-квантов зависит от состава и электронной конфигурации твердого вещества. Это позволяет более глубоко изучать природу твердого вещества, определять его электронную структуру, валентное состояние элементов, находящихся в составе данного вещества. Излучателем и поглотителем гамма-квантов при излучении мёссбау-эровских спектров служат вещества, содержащие атомные ядра одного и того же элемента (например, атомы в возбужден- [c.133]


    Поскольку квадрупольное расщепление зависит от электронной структуры, по значению константы квадрупольного взаимодействия можно сделать выводы о степени окисления центрального иона, например Ре(П)—Fe(III). Однако в таких случаях следует учитывать и другие факторы, определяющие квадрупольное расщепленне (симметрия комплекса, распределение электронов на подуровнях расщепления). Иногда полезно сочетать информацию о величине квадрупольного расщепления с изомерным сдвигом центра дублета. Ниже представлены рассчитанные значения изомерного сдвига для различных состояний окисления высокоспиновых соединений железа. [c.344]

    Кристаллические модификации железа аир металлурги называют а- и р-феррит. Для обеих модификаций характерна объемно-центрированная элементарная ячейка, и с точки зрения кристаллографии они неразличимы. Однако электронная структура этих модификаций различна, поэтому, если а-феррит обладает магнитными свойствами, то для р-феррита они нехарактерны. Различны и химические свойства так, а-Ре в отличие от p-Fe не растворяет углерод. Атомы растворенного р-Ре углерода занимают середины ребер объемноцент-рированной элементарной ячейки. [c.116]

    С точки зрения теории кристаллического поля [2] комплексы железа (II) и (III) должны обладать различной термодинамической стабильностью как в сильном, так и в слабом ноле. Действительно, ион железа (II) имеет 3 -электрониую конфигурацию, а энергия стабилизации сильным кристаллическим полем (ЭСКП) октаэдра для электронной структуры максимальна и равна А ,. Для слабого [c.128]

    XVI, ное в качественном отношении описание электронной структуры и природы связи в металлоценах. Вначале устойчивость структуры (XVI) металлоценов объяснялась в соответствии с правилом Хюккеля (4л-ь2) стремлением пятичленных колец образовать ароматический секстет, что должно приводить к переносу заряда с атома Ре на кольца. Такая структура должна соответствовать электронному распределению типа Ре2+(СбН5)2 . Расчеты по РМХ в согласии с экспериментальными данными (табл. 56) показывают, однако, что на атоме железа находится значительно меньшей заряд—около +0,4е. Поэтому первоначальное предположение о донировании двух электронов с атома [c.307]

    Электронные структуры и 1.-г-ор6итален атч)ма железа и ионои Ре2 и можно изобразить так  [c.310]

    Аноды из оксидов железа. Наибольшее распространение из анодов этой группы получили магнетитовые аноды. Магнетит Рез04 представляет собой смешанный оксид железа со структурой обратной шпинели Ре +(Ре2+реЗ+)04. Магнетит принадлежит к классу полупроводников, обладающих электронной проводимостью. Электропроводимость магнетита низка и сильно зависит от соотношения Ре + Ре +. Наибольшей электропроводимостью обладают оксидные фазы, по составу близкие к Рез04 и при соотношении Ре + Ре + = 2. [c.13]

    Электронная структура для изолированного иона Ре должна быть такой, при которой четыре З -орбитали должны быть заняты одиночными электронами с параллельными спинами, а одна занята парой электронов. Ион с такой структурой будет иметь магнитный момент, соответствующий параллельно ориентированным спинам четырех неспаренных электронов. Экспериментально установлено, что гидратированный ион железа П) Ре(Н20)б имеет магнитный момент именно с таким значением, в то время как ион гексацианоферрата(П) магнитным моментом не обладает. Отсюда можно сделать вывод, что связи в этих двух комплексных ионах различны по своему характеру в гидратированном ионе железа (И) эти связи, имеющие значительный ионный характер, образованы с использованием 45-орбитали и трех 4р-ор-биталей, в то время как в ионе гексацианоферрата(П) орбитали образуют ковалентные связи. Изучение магнитных свойств комплекса очень часто позволяет сделать вывод о природе орбиталей связи, использованных атомами данного металла. Такой магнитный критерий позволил установить, что комплексы металлов с сильно электроотрицательными атомами или группами обычно имеют в основном ионный характер (без Зй-орбиталей, используемых для связей), тогда как комплексы металлов с менее электроотрицательными атомами или группами носят ковалентный характер (с использованием З -орбиталей в гибридных связывающих орбиталях). [c.473]

    Полинг [1] придерживается точки зрения, согласно которой между металлическими и обычными ковалентными связя.ми пет существенного различия (впервые эту мысль высказал Го,)ьд-шмидт в 1928 г.). Однако в металлических кристаллах и отличие от обычных кристаллов с ковалентными связями, а1С правило, реализуются очень высокие координационные числа. Более того, в таких металлах, как натрий, для образования 8+6 связей в ОЦК-структуре доступны только четыре орбитали (одна 5 и три р). Полинг предположил, что в образовании связей участвуют все или большинство внешних электронов атома, включая -электроны в с/гучае переходных металлов, п что существует особый тип резонанса (см. ниже). Из этнх положений следует, что кратность связи и валентность могут б ,иь дробными величинами. Уменьшение размеров атомов в ряду К, Са, 5с, Т1, V (аналогично от КЬ к МЬ и от Сз к Та) и примерное постоянство размеров атомов для элемента V— ТИ групп в каждом ряду переходных металлов объясняется следующим образом. При переходе от К к V происходят увеличение числа связывающих электронов от 1 до 5 и постепенный рост числа ковалентных связей, участвующих в резонансе, и, следовательно, монотонное уменьшение межатомных расстояний. Далее предполагается, что у атомов элементов от Сг до N1 в связывании участвуют не все девять имеющихся орбиталей (одна а, три р и пять с1), а лишь 5,78 из них являются устойчивыми сиязываюнти.ми 5р -орбпталями, еще имеются 2,44 атомной несвязывающей ( /-орбиталн, а оставшиеся 0,78 металлической орбитали обеспечивают несинхронный резонанс между отдельными валентными связями. Эти значения былн вычислены из магнитной восприимчивости (при насыщении) ферромагнит1н. железа, кобальта и никеля. Электронные структуры Полинга для ряда металлов приведены в табл. 29.6. У атомов Сг, А л и Ре число -электронов меньше, чем число орбиталей, так что спаривания спинов не происходит. Одиако у атома Со на 3,12 [c.459]

    В этой самой необычной в Периодической системе подгруппе девять элементов Fe, Со, Ni, Ru, Rh, Pd, Os, Ir и Pt. Во-первых, она объединяет элементы с разной электронной структурой от (п - 1) до (п - 1) d ns . Во-вторых, свойства элементов 4-го периода (семейство железа) резко отличаются от свойств элементов 5-го и 6-го периодов (платиновое семейство). В-третьих, высшая валентность -)-8 свойственна только двум элементам платиновой группы Os и Ru. В-четвертых, не только сами элементы подгруппы VIIIB, но и высшие оксиды большинства элементов подгруппы очень мало напоминают инертные газы и их оксиды т. е. в этой подгруппе различие свойств элементов главной и побочной подгрупп достигает максимума. [c.185]

    С. Лайонйо [69] развил представление о том, что ионы в растворах могут образовывать комплексы за счет координационных связей осуществляемых с помощью электронов внешних и внутренних энергетичес-уровней. Пытаясь найти корреляции между электронной структурой комплексов и механизмом электроосаждения металлов, он приходит к выводу, что выделение металлов происходит в основном иэ внешнеорбитальг комплексов. Так, железо легко осаждается иэ гидратированных ио- 81 которые можно рассматривать как внешние орбитальные комплексы, зряды внутриорбитальных соединений, к которым можно отнести вос- [c.57]

    Некоторые исследователи считают, что кинетика катодного осаждения и анодного растворения железа определяется участием гидрокоил-ионов. Такой вывод вытекает из существенного влияния pH на скорость Мектрохимической реакции. В этом случае ионам ОН отводится роль аталитичвских мостиков, изменяющих заряд частиц и их электронную структуру.Впервые на участие ионов ОН" в процессе анодного раство- [c.66]

    Хотя приведенные примеры и. указывают на взаимосвязь электронной структуры металлов со скоростью катализируемых ими реакций, такая зависимость не может быть универсальной и однозначной. Очевидно, что характер и направление изменений скорости процесса должны прежде всего за-висеть. от механизма, реакции и природы лимити-руюше,й стадии. Как отмечает Г. К. Боресков [611], степень заполнения -зоны, отвечающая максимальной скорости реакции, может быть для разных реакций различной, в зависимости от механизма процесса и конфигурации активированного комплекса. А. А. Баландин и П. Те-тени [612], на основании своих данных указывают, что одним изменением числа -вакансий металла нельзя объяснить различия скорости реакции дегидрирования спиртов. Я. Б. Гороховатский [635] не обнаружил взаимосвязи изменений работы выхода электрона серебряного катализатора и скорости реакции окисления этилена. X. Кинза и Г. Ринекер [636] отмечают, что изменения каталитической активности сплавов никеля с железом разного состава не отвечают предсказываемым теорией Д. Даудена. [c.267]

    Удельная каталитическая активность металлов определяется их химическими свойствами [1, 2, 3], а следовательно, электронной структурой и должна зависеть от их положения в периодической системе Д. И. МеН делеева. Для ряда процессов, связанных с активацией водорода [9, 4], наибольшей активностью среди металлов 4-го периода обладает никель. В случае же реакции синтеза аммиака максимум активности приходится на железо [13, 15]. Различие в положении максимума можно объяснить тем, что в синтезе МНз решающим фактором является взаимодействие азота с металлом. [c.192]

    Научные исследования посвящены изучению пространственной и электронной структуры неорганических и металлоорганических соединений, в частности комплексов переходных металлов (марганца, железа, кобальта, никеля), карбонилов металлов. Совместно с Дж. Уилкинсоном опубликовал работы Современная неорганическая химия (т. 1—3, русский перевод 1969) и Основы неорганической химии (русский перевод 1979). Открыл (1964) существование кратных ( четверных ) связей в анионе Rea lgJ . [c.260]

    Мы исследовали электронную структуру (величину зарядов на атомах и связях) модели поверхностного комплекса металла с аминами (этиламином, диэтиламином, триэтиламином), для сравнения брали аммиак. Рассматриваемые комплексы алифатических аминов с железом близки по геометрической структуре (в каждой молекуле атом азота имеет по одной неподеленной паре электронов) и представляются совокупностью только молекулярных р-орбиталей. Межатомные расстояния амина, входящего в комплекс, для расчета принимали равными равновесному состоянию между ядрами в свободном амине. Расстояние между атомом железа и атомом азота принимали равным сумме металлическо1Го радиуса железа и ковалентного радиуса атома азота (для железа в кубической объемно-центрироваеной решетке г = 1,231 А, а для азота г=0,69 А). [c.75]

    В сплавах — фаза, представляющая собой нреим. низкотемпературный твердый раствор. В сплавах на основе мономорфных хим. элементов (нанр., в сплаве медь — цинк) А.-ф. образуется из расплава. В сплавах на основе полиморфных хим. элементов (напр., в сплаве марганец — кремний) А.-ф. образуется преим. при понижении т-ры из бета-фазы (рис.), за исключением сплавов на основе железа, где образуется из гамма-фазы (см. Диаграмма состояния железо — углерод). Концентрационный интервал существования А.-ф. зависит гл. обр. от электронной структуры, тина кристаллической решетки, атомного диаметра, валентности и т-ры плавления исходных компонентов. Если компоненты обладают близкими физико-хим. св-вами и имеют идентичную кристаллическую структуру. [c.53]

    Запись данных опыта. В каком случае произошло восстановление железа Написать уравнение протекающей реакции. Чем объяснить различную восстановительную способность отрица-гельных ионов галогенов Привести электронные структуры отрицательных ионов галогенов, расположив их в порядке возрастания восстановительной активности. 7 1огут ли отрицательные ионы галогенов проявлять окислительные свойства Ответ обосновать. [c.138]


Смотреть страницы где упоминается термин Железо электронная структура: [c.467]    [c.128]    [c.149]    [c.123]    [c.381]    [c.139]    [c.303]    [c.459]    [c.57]    [c.40]    [c.222]    [c.711]   
Неорганическая химия Том 2 (1972) -- [ c.473 , c.479 ]




ПОИСК





Смотрите так же термины и статьи:

Железо структура



© 2025 chem21.info Реклама на сайте