Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород, получение двухступенчатая

    Катализаторы конверсии природного газа с водяным паром. Процесс паровой каталитической конверсии природного газа является наиболее распространенным способом промышленного получения водорода. Этот эндотермический процесс обычно осуществляют в трубчатых реакторах с внешним газовым обогревом, Наиболее перспективным и экономичным считается процесс паровой конверсии под давлением 20—30 атм. Однако наибольшее количество публикаций за рассматриваемый период посвящено. не этому варианту процесса, а конверсии природного газа при более низком давлении. Эти материалы касаются, в основном, вопросов усовершенствования данного процесса в его простейшем одноступенчатом и двухступенчатом вариантах, а также возможностей применения новых никелевых катализаторов (табл. 11). [c.34]


    Сравним эти данные с результатами, полученными для одноступенчатой системы с рециркуляцией пропилена и хлористого водорода и двухступенчатой системы, работающей с рециркуляцией только хлористого водорода. В результате сравнения видно, что одноступенчатая система, в которой применяется рециркуляция непрореагировавшего сырья, позволяет уменьшить реакционный объем по сравнению с двухступенчатой системой, работающей с рециркуляцией хлористого водорода, на 4,4%. Уменьшение величины реакционного объема двухступенчатой системы, в одном из реакторов которой применяется рециркуляция непрореагировавшего сырья, по сравнению с одноступенчатой системой с рециклом составляет 7,8%, а по сравнению с двухступенчатой системой, работающей с рециркуляцией хлористого водорода, —11,9%. В табл. 42 приведены оптимальные величины основных параметров для всех сравниваемых систем. [c.295]

    С целью получения метансодержащего газа применяют двухступенчатую конверсию бензина (табл. 27, № 3). При этом смесь бензина с паром контактирует с катализатором сначала в первой реакционной зоне, а затем к полученному газу добавляют дополнительное количество бензина и водорода. Такая смесь контактирует с 1ем же катализатором во второй реакционной зоне. При этом соотношение пар бензин на первой стадии равно двум, а общее весовое соотношение этих реагентов равно 1,5. [c.43]

    В двухступенчатом процессе получения водорода паровой конверсией бензина применяют два разных последовательно расположенных катализатора (по одному на каждой ступени). Первый (по ходу реагентов) катализатор содержит небольшое количество никеля (менее 5%), нанесенного на прокаленную при высокой температуре окись алюминия. Второй катализатор, объем которого составляет 80% от общей загрузки, содержит в пять раз больше никеля, чем первый. В этот катализатор введено также до 0,5% окислов щелочных металлов. В качестве носителя этого катализатора используют материал, не обладающий кислотными свойствами (спеченный корунд, окись алюминия). [c.45]

    Конверсия окиси углерода с водяным паром является составной частью процесса получения водорода для синтеза аммиака, метанола, высших спиртов и других процессов на основе природного, полу-водяного, попутных газов нефтеперерабатывающих производств и других газов. В промышленности конверсию окиси углерода с водяным паром осуществляют в двухступенчатых контактных аппаратах радиального типа на железохромовом катализаторе по реакции  [c.190]


    Традиционный метод производства водорода каталитической конверсией включает следующие стадии 1) сероочистка исходного сырья 2) каталитическая конверсия углеводородов 3) двухступенчатая конверсия окиси углерода 4) утилизация теплоты и охлаждение газа 5) отмывка от двуокиси углерода 6) удаление остатков окиси и двуокиси углерода 7) компримирование полученного водорода. [c.116]

    При получении ароматических углеводородов бензин пиролиза подвергают двухступенчатому гидрированию. На первой ступени гидрируют диолефины, на второй — моноолефины. Гидрирование олефинов требует дополнительного расхода водорода, однако общий баланс Нз на нефтехимическом предприятии с использованием в качестве исходного сырья бензина остается положительным. Специ- [c.32]

    При переработке углей с замкнутым по пастообразователю циклом выход жидких продуктов, выкипающих при температуре до 320 °С, составлял 55—61% (масс.) при расходе водорода до 6% (масс.). Эти продукты, содержавших 10—15% фенолов, 3—5% азотистых оснований и 30—50% ароматических углеводородов, затем подвергали двухступенчатой гидрогенизации в паровой фазе на стационарном слое катализаторов гидрокрекинга. Суммарный выход бензина с октановым числом 80—85 по моторному методу достигал 35% (масс.), а при одновременном получении бензина и дизельного топлива их суммарный выход составлял около 45% (масс.) в расчете ча исходный уголь водород получали газификацией угля или полукокса. [c.79]

    В табл. 113 приведены результаты двухступенчатого процесса гидрокрекинга вакуумного дистиллята, проведенного при высокой и низкой температуре реакции. При высоких температурах (400-420°С) значительно выше выход легких и газообразных продуктов, а также выше расход водорода по сравнению с аналогичными показателями, полученными при низких температурах (360-400°С). [c.260]

    Остаточное сырье обычно перерабатывают по двухступенчатой схеме на первой ступени жидкое сырье перерабатывается в присутствии серостойкого катализатора. Тяжелую непревращенную часть сырья можно возвратить в качестве рециркулята, а полученную легкую часть направляют на вторую ступень, где в газовой фазе осуществляется более или менее глубокое ее превращение. На обеих ступенях используют более значительное, чем при гидроочистке, давление, так как высокие температуры гидрокрекинга (>400 С) препятствуют реакциям насыщения водородом непредельных и полициклических ароматических углеводородов. В реакторах гидрокрекинга поддерживают давление 15-20 МПа. [c.74]

    Для того чтобы убедиться, что температура 130° С действительно является оптимальной из всех рассматриваемых температур, сравним оптимальные показатели систем при других температурах. Полученные расчеты приведены в табл. 34. Для температур 90, 100, 110, 120° С найдены оптимальные значения объемных скоростей и объемов реакторов одно- и двухступенчатых систем для различных значений коэффициента избытка хлористого водорода. В таблице выделены все величины оптимальных значений. Согласно критерию оптимальности (IX.2.1) и (IX.2.2), мы пришли к следующим выводам. [c.279]

    Поэтому представляет интерес комбинирование электролитического производства водорода и низкотемпературной ректификации жидкого водорода для получения тяжелой воды. При этом электролиз может использоваться только для получения водорода, а также для первоначального концентрирования дейтерия в водороде, например при двухступенчатой схеме электролиза, как показано на рис. У1-15. При этом на первой ступени электролиза желательно работать с максимально большими значениями удельного отбора и коэффициента разделения. На второй ступени целесообразен возможно более низкий коэффициент разделения для уменьшения концентрации дейтерия в электролите и механических потерь ОгО с электролитом. [c.262]

    Такил образом, исходя из полученных результатов, можно сделать следующий вывод для процесса гидрохлорирования пропилена оптимальной будет двухступенчатая система с коэффициентом избытка хлористого водорода / = 1,8 и температурой 130° С. При этом для первой ступени = 0,135 л, = 0,43 для второй Уа = 0,134 л, Рч = 0,37, т. е. объемы обеих ступеней неодинаковы. Объемная скорость = П9,7 л/л кат-час, а общий объем реакторов системы Vn=. = 0,269 л. [c.281]

    Для получения максимального выхода бензина в большинстве случаев используют двухступенчатый процесс с удалением на первой ступени гидрокрекинга сернистых и азотистых соединений. Давление в реакторах обеих ступеней 10—15 МПа, температура 370—420 °С, кратность циркуляции водорода 1000 м на 1 м сырья. Используют наиболее активные катализаторы. [c.259]


    Двухступенчатый процесс получения цианистого водорода, уже сравнительно давно применяемый в полузаводском масштабе в США, основан на окислении аммиака в окись азота избытком воздуха и пропускании образующейся газовой смеси вместе с метаном через второй реактор, где образуется цианистый водород [58]. Достигаемый выход (отнесенный к введенному аммиаку), по-видимому, пе выше, чем при одноступенчатом процессе с добавкой кислорода. [c.226]

    Полнота извлечения H2S при рассматриваемом процессе изменяется от 85 до почти 100%. По литературным данным [6], содержание H S в очищенном газе, достаточное для получения отрицательной пробы с ацетатом свинца, может быть достигнуто даже при наличии всего одного абсорбера. Однако, если необходимо получать газ высокой чистоты, рекомендуется применять двухступенчатую абсорбцию. В зависимости от содержания цианистого водорода в газе и интенсивности образования тиосульфата удается превратить в серу 70—80% H2S, первоначально содержавшегося в газе. [c.205]

    Относительно неглубокий гидрокрекинг вакуумного газойля с получением целевого продукта дизельной фракции может быть осуществлен в одну ступень даже при давлении 4—6 МПа, температуре 420-425 °С, объемной скорости подачи сырья 1,1 ч и кратности циркуляции водорода 550-700 м на 1 сырья. Выход дизельного топлива при этом достигает =45 %. При получении в качестве целевых продуктов реактивного топлива и бензина необходимо повышенное давление и двухступенчатая схема процесса. [c.72]

    Впоследствии А. Б. Фрадковым ожижитель ВОС-3 был модернизирован (рис. 56) и приспособлен для получения параводорода. Интересной особенностью схемы является применение двухступенчатой конверсии при температурах жидкого азота и водорода. [c.119]

    В отличие от одноступенчатой системы гидрохлорирования, в двухступенчатой системе можно осуществить противоток пропилена и хлористого водорода между ступенями, а также отвод продукта реакции после каждой ступени. Как противоток реагирующих веществ, так и отвод изопропилхлорида между ступенями позволяют значительно интенсифицировать химический процесс. Особенно это важно для участка реакционной зоны, где получение глубоких превращений сильно затруднено из-за низких скоростей реакций. [c.355]

    При двухступенчатой конверсии смешанного газа с водяным паром при объемном соотношении 1 2 на катализаторе ГИАП-3 в первой ступени при температуре 930—950° С и объемных скоростях до 550—600 объемов на один объем катализатора получен конвертированный газ содержанием водорода до 80% и окиси углерода до 10—12%. [c.135]

    Получение в качестве основного продукта бензина. Процесс осуществляется при повышенной температуре (до 25° С). Выход бензина достигает 55% на сырье второй ступени, в том числе 19,0% фракции н. к.— 85° С и 36% — 85—195° С. Выход фракции 195—345° С составляет 27%. На реакции расходуется 2,5% вес. водорода. Бензиновая фракция удовлетворяет требованиям на автомобильный бензин сорта А-72 или А-76, Октановые числа бензинов двухступенчатого гидрокрекинга вакуумного дистиллята следующие  [c.78]

    В тех случаях, когда в оперативных условиях процесса один из компонентов склонен к побочным реакциям, находит применение 1иетод постепенной подачи его по частям в зону реакции. В виде примера можно привести термическое алкилирование изобутана эте-ном и др. Противоток реагентов применяется лишь при наличии благоприятных предпосылок, встречающихся весьма редко. Примером этого метода служит получение алкилсульфатов в реакторах тарель--чатой конструкции, где навстречу поднимающимся вверх газообразным алкенам подается крепкая серная кислота. Принципиально возможная прлупериодическая каскадная схема с противотоком реагентов была уже освещена ранее при рассмотрении принципов действия реакционных устройств. Близким к этому методу является ступенчатый противоток водорода в двухступенчатых гидрогенизационных уста- иовках низкого давления, детально рассмотренный в работах Касселя [2]. Данный принцип подачи реагентов в сущности является промежуточным между прямоточным и противоточным. [c.16]

    В промышленности процесс может быть осуществлен, как непрерывный. При этом получение водорода из метана в одну стадию (СН4- С-Ь2Н2) имеет некоторые технологические преимущества по сравнению со способом получения водорода путем двухступенчатой конверсии СН4. [c.30]

    Технологические схемы блоков разделения гидрогенизатов гидроочистки и катализатов риформинга с получением высокооктановых бензинов зависят от сырья и давления реакции. На алю-мокобальтмолибденовых и платиновых катализаторах (давление реакции 4 МПа) газы из гидрогенизата и катализата выделяются обычно двухступенчатой холодной сепарацией. На I ступени выделяется водородсодержащий газ при давлении реакции и температуре около 40°С ( Б сепараторе высокого давления) на IIступени при этой же температуре и давлении 0,5—0,6 МПа отделяются растворенные углеводородные газы (в сепараторе низкого давления) (рис. 1У-21). В системе холодной двухступенчатой сепарации получается водородсодержащий газ (до 60—75% об. Нг) при сравнительно небольших потерях водорода с углеводородным газом. [c.231]

    Гидрокрекинг — одно- или двухступенчатый каталитический процесс (на неподвижном или движущемся слое катализатора), протекающий в среде водорода при его расходе от 1 до 5% (масс.), при температурах до 430°С на первой ступени и до 480 °С — на второй, объемной скорости подачи сырья до 1,5 ч , давлении до 32 МПа и циркуляции водородсодержащего газа 500—2000 м /м сырья. Процесс сопровождается частичным расщеплением высокомолекулярных комнонентов сырья и образованием углеводородов, на основе которых в зависимости от условий процесса и вида сырья можно получать широкую гамму продуктов от сжиженных газов до масел и нефтяных остатков с низким содержанием серы. В качестве сырья используют бензиновые фракции (для получения сжиженного газа), керосино-дизельные фракции и вакуумные дистилляты (для получения бензина, реактивного й дизельного топлив) остаточные продукты переработки нефти (для получения бензина, реактивного и дизельного топлив) гачи и парафины (для получения высокоиндексных масел) высокосернистые нефти, сернистые и высокосернистые мазуты, полугудроны и гудроны (для получения дистиллятных продуктов или котельного топлива с низким содержанием серы). [c.207]

    Продукт, полученный по второму уравнению, изомеризуется в карбинол (СНз)2С(ОН)—СвН40Н, а продукт, образующийся по третьей реакции, изомеризуется в дифенилолпропан. Однако ни самим Дианиным, ни при последующих исследованиях кетали не были обнаружены. Кроме того, механизм, предложенный Дианиным, не согласуется с тем, что реакция замещения в фенолах протекает путем прямого замещения атомов водорода в бензольном кольце . Тем не менее Дианин, проводя синтез дифенилолпропана при соотношении фенола к ацетону 1 1, выделил промежуточное соединение, которое при добавлении избытка фенола в присутствии дымящей соляной кислоты давало дифенилолпропан. Структура этого соединения Дианиным не была установлена, но его наличие говорит в пользу двухступенчатого механизма образования дифенилолпропана, хотя и не через кетали. [c.80]

    Следует отметить, что мембранная установка по извлечению водорода из продувочных газов синтеза аммиака становится неотъемлемой частью современнного энерготехнологического агрегата большой единичной мощности и дает существенную прибыль. Так, за 1981 г. только на установках Призм извлекали около 1 млрд. м водорда в год [38]. По данным Монсанто [39], себестоимость полученного с помощью мембранной установки технического водорода составляет 0,028 долл/м , в то время как рыночная цена этого продукта 0,143—0,214 долл/м . Поэтому, например, для установки двухступенчатой очистки производительностью (ом. табл, 8.4) по техническому водороду 2084 м7 Ч, годовой экономический эффект составляет около [c.279]

    Например, известны случаи, когда неучтенный хлор в углеводородном сырье вызывал коррозию реакционных труб нечи парового риформинга и другого оборудования, отравлял некоторые катализаторы и загрязнял получаемый продукт. Аналогичные результаты получались при использовании загрязненного хлором воздуха в качестве сырья для производства аммиака по схеме с двухступенчатым риформингом углеводородного газа и нефти. Появление в природном газе ранее отсутствовавших органических соединений серы привела к снижению активности катализатора парокислородного риформинга и к пэме-нению его температурного режима. В результате этих факторов в синтез-газе появились примеси ацетилена, которые на стадии очистки медно-аммиачным раствором в установке получения водорода образовали при нарушении режима регенерации осадок взрывчатой ацетиленовой меди. [c.24]

    Гидрокрекинг предназначен для получения дополнительных количеств светлых нефтепродуктов каталитическим разложением тяжелого сырья в присутствии водорода. В зависимости от сырья и продуктов, которые необходимо получить, используются одноступенчатые и двухступенчатые схемы, системы с неподвижным, движущимся и суспендированным катализатором. Процесс изучается во ВНИИНП. [c.41]

    При углублении переработки вакуумных газойлей с целью получения реактивного топлива и бензина, а также при переработке тяжелых газойлей вторичного происхождения используют двухступенчатые схемы. На первой ступени происходит гидрооблагораживание сырья на азот- и серостойких катализаторах, а на второй - гидрокрекинг облагороженного сырья на катализаторе кислотного типа, содержащем Со, Ni, W, Мо или другие металлы VI и VIII групп на оксиде алюминия или на цеолитах. Катализатор в реакторах размещен по секциям. Для отвода тепла между секциями предусмотрена подача холодного водорода. Ввиду значительного тепловыделения при гидрокрекинге вторичного сырья его рекомендуется перерабатывать с добавкой 25-30 мае. %. прямогонного сырья. [c.75]

    Авторы [124] рассмотрели влияние АС на процессы двухступенчатого гидрокрекинга тяжелых нефтяных дистиллятов. На первой ступенн, на которой подготавливалось и очищалось сырье для второй ступени, использован алюмо-кобальт-молибденовый катализатор процесс протекал при 425 С, объемной скорости подачн сырья 1 ч , давлениях водорода 50, 150 и 250 ат. Гидрогенизат после первой ступени представлял собой исходное сырье для второй ступени, на которой использовали бифункциональный (цеолитпый) катализатор на носителе. Характеристика исходного сырья представлена в табл. 115. Трн исходных образца содер-я али 0,06 0,01% и менее азота это позволило выявить его влияние на процессы крекинга па второй ступени. Из полученных экспериментальных данных следует, что АС значительно влияют па расщепляющую активность и стабильность работы катализатора (рис. 58). Увеличение содержания АС уменьшает выход бензина. Авторы [124] попытались нейтрализовать вредное влияние АС на процессы гидрокрекинга (рис. 59). При повышении давления от 5 до 15 МПа выход бензина увеличивается до 6о% при некотором, однако, уменьшении октанового числа. Отмеченная возможность изменения показателей процесса за счет изменения условий гидрокрекинга может дать значительный эффект лишь на относительно короткий период и не задерживает уменьшения активности катализатора при продолжительных процессах. При переработке о,1рья с 0,06% N активность катализатора заметно снижается даже при 15 МПа. [c.172]

    При гидрокрекинге из тяжелого сернистого дистиллятного или остаточного сырья получают в значительных количествах бензин, реактивное и дизельное топливо, причем в зависимости от расхода водорода и режима можно ориентировать процесс на получение максимального выхода любого из перечисленных продуктов. Процесс, как правило, двухступенчатый на первой ступени используют сероустойчивые катализаторы типа катализаторов гидроочистки и происходит гидрооблагораживание сырья при его частичном разложении. На второй ступени на гидрокрекирующих катализаторах, содержащих металлы VI и УП1 групп (главным образом Со, N1, Ш, Мо, Р1) на носителях (алюмосиликаты аморфного типа или цеолиты) происходит превращение сырья до требуемой глубины. Обе ступени характеризуются высоким парциальным давлением водорода (давление в системе 15—20 МПа) и несколько более высокими, чем при гидроочистке, температурами (400—450°С). [c.234]

    Получение. Д. выделяют гл. обр. из тяжелой воды, напр, электролизом, р-цией с металлами. Д. получают также низкотемпературной ректификацией из электролитич. водорода или азотоводородной смеси для синтеза ЫН, (водород к-рой содержит 250-300 м. д. НО). Исходный водород или азотоводородную смесь после тщательной очистки от примесей (О 2 ао 10 мольных долей, остальные газы-до 10" - 10 мольных долей) сжижают и двухступенчатой ректификацией при 22-24 К выделяют конц. НО. Последний в присут. катализатора превращается в смесь Н2 -Н О2 -Н НО, из к-рой низкотемпературной ректификацией получают 99,8%-ный О2. Сжиганием с воздухом или О2 последний переводят в тяжелую воду. [c.17]

    Двухступенчатая схема конверсии бензина принята для проверки головными институтами Минхимпрома и Миннефтехимпрсма (ГИАП и ВНИИНГ1). Эта схема положена в основу разработанной нами передвижной малогабаритной установки, предназначенной для получения водорода в полевых условиях. [c.125]

    Гидрокрекинг тяжелых газойлей в среднедистиллятные фракции (реактивное и дизельное топливо) также проводят по одно- и двухступенчатой схемам. Наиболее распространен одноступенчатый процесс на катализаторах, не чувствительных к ядам, при температуре 380—410 °С и давлении водорода 12—15 МПа. Режим процесса подбирают таким образом, чтобы при невысоком выходе бензина получать до 85 % реактивного или дизельного топлива. В СНГ разработан одноступенчатый процесс гидрокрекинга вакуумного газойля в одну ступень на цеолитсодержащем катализаторе ГК-8 с получением 52 % реактивного топлива или до 70 % зимнего дизельного топлива с остаточным содержанием аренов 5—7%. Гидрокрекинг вакуумных дистиллятов сернистых нефтей проводят по двухстадийной схеме. [c.391]

    Рассмотренные выше схемы переработки нефтяного, смоляного и угольного сырья (совмешенная двухступенчатая схема, одноступенчатая схема гидрогенизации, комбинированные схемы) позволяют повысить термический к. п. д. процесса, однако наиболее важной задачей при применении этих схем является изыскание путей повышения экономичности процессов. Первоочередными задачами являются а) разработка способов получения наиболее дешевого водорода и б) выпуск наряду с моторным топливом сырья и полупродуктов для синтеза ценных органических продуктов (ароматические углеводороды, фенолы, этилен, йутилен, этиловый и бутиловый спирты и т. п.). Выпуск различных х1имических продуктов совместно с моторным топливом должен значительно удешевить стоимость моторных и других спе-диальных видов жидкого топлива. [c.256]

    Успехи в технологии получения цеолитных катализаторов позволяют менять химический состав катализатора в соответствии с качеством перерабатываемого сырья и составом целевых продуктов. Выбирая подходящую каталитическую систему и тот или иной вариант процесса, можно получать реактивное топливо с требуемыми характеристиками [22]. Так, данные табл. 13-11 показывают, что катализатор А, разработанный для получения бензина в одноступенчатом процессе гидрокрекинга, позволяет также после изменения некоторых рабочих параметров перерабатывать калифорнийский вакуумный газойль с высоким содержанием азота в реактивное топливо. Применив в тех же самых условиях катализатор В, предназначенный для одноступенчатого процесса получения турбореактивного топлива, удалось повысить выход этого топлива на 35%, а используя катализатор С в двухступенчатом варианте процесса гидрокрекинга, можно в широких пределах менять содержание ароматических компонентов в продуктах. В приведенном примере низкое содержание ароматических углеводородов соответствует требованиям, предъявляемым к реактивному топдиву. В зависимости от катализатора и типа технологического процесса выход турбореактивного топлива может меняться от 45 до 60%. Содержание ароматических углеводородов меняется от 34 до 2 об.%, и такое колебание отражается на расходе водорода. Все три технологические схемы позволяют в случае необходимости повысить выход бензина до 100%. Приведенные примеры показывают, что гидрокрекинг пригоден для переработки сильно различающегося [c.358]


Смотреть страницы где упоминается термин Водород, получение двухступенчатая: [c.64]    [c.106]    [c.70]    [c.83]    [c.260]    [c.14]    [c.14]    [c.68]    [c.373]    [c.297]    [c.263]    [c.18]   
Основы химической технологии (1986) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Водород получение



© 2025 chem21.info Реклама на сайте