Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические параметры процессов окисление

Таблица 9. Термодинамические параметры процессов окисления НС и оксихлорирования Таблица 9. Термодинамические параметры процессов окисления НС и оксихлорирования

    Химические процессы можно непосредственно использовать для получения электрической энергии с помощью электрохимических элементов. В отличие от других химических систем в электрохимических элементах реакции окисления и восстановления разделены пространственно. Это позволяет управлять химическими реакциями на электродах и получать разнообразные химические продукты. Кроме того, электрохимические элементы широко применяют для расчета термодинамических параметров индивидуальных веществ, а также в различных измерениях, например концентраций, pH и т.д. [c.251]

    Если термодинамически возможны различные параллельные реакции основного исходного вещества, то применение катализатора, ускоряющего одну из возможных реакций, позволяет подавлять остальные и получать такой целевой продукт, который при некаталитической реакции не получается. В ряде процессов применение катализаторов разного действия позволит получить со значительным выходом различные продукты. Напрпмер, как видно из табл.8, окисление этилена на серебряном катализаторе лежит в основе производства оксида этилена, а на палладиевом катализаторе значителен выход ацетальдегида. Основной продукт, получаемый гидратацией ацетилена, также зависит от применяемого катализатора (см. табл. 8) в совокупности с другими технологическими параметрами процесса. [c.215]

    Несмотря на огромные трудности учета влияния указанных факторов на процесс окисления, все-таки имеется возможность наметить принципы конструирования жаростойких сплавов с точки зрения выбора основы сплава и легирующих элементов. Это возможно сделать на основе имеющихся физических и термодинамических параметров окислов и металлов (табл. 2), а также большого экспериментального материала по исследованию процесса окисления сплавов. В результате установлена роль рассмотренных выше факторов. Число этих факторов для многокомпонентных сплавов велико. Однако, если учесть, что скорость окисления наиболее жаростойких сплавов при высоких температурах описывается законом квадратичной параболы или близким к нему, то можно считать что весь процесс в целом контролируется в основном скоростью диффузии реагентов через окалину. [c.13]

    Ме - Ме+ + е Ме+ ->Ме + е и т. д., и что каждая отдельная стадия будет обладать своим собственным набором кинетических параметров, т. е. значениями коэффициентов переноса и токов обмена. В результате этого упри стационарном режиме процесса анодного растворения металла в приэлектродном слое устанавливаются вполне определенные значения концентрации всех промежуточных продуктов анодной реакции — ионов низших ступеней окисления. Однакс все эти ионы не будут находиться в термодинамическом равновесии ни с самим металлом, ни с конечным продуктом его окисления. Их концентрация будет определяться только скоростью образования этих частиц и последующего превращения в окисленную или исходную, более восстановленную форму. [c.113]


    При исследовании закономерностей анодного окисления lg для устранения осложнений, связанных с возможным участием в процессе хлор-иона— продукта гидролиза растворенного I2, — работа велась в достаточно кислых растворах, где гидролиз хлора практически подавлен. О пренебрежимо низкой концентрации в растворе хлор-ионов кроме расчетных термодинамических данных свидетельствует и ряд экспериментально измеряемых параметров высокое значение потенциала погружения платины 192, 93], а также характерное замедление скорости анодных процессов в присутствии хлора (см. рис. 15), наблюдаемое только в растворах, свободных от С1 [93]. Такое влияние lg на кинетику анодных процессов на платине доказывает, что его адсорбция происходит в широкой области потенциалов, а деполяризующего действия, подобно хлор-ионам (см. кривые 2, 3 на рис. 16), молекулярный хлор, как естественно для окислителя, не оказывает, хотя и способен на аноде окисляться до высшей валентности. [c.150]

    В растворах сравнительно несложного и определенного состава, содержащих химически обратимые системы, окислительный потенциал является термодинамической характеристикой, которая зависит от химического состава и соотношения концентраций окисленной и восстановленной форм вещества. Это позволяет применять оксредметрию, как метод изучения взаимодействия веществ в растворах [1—6] и как метод измерения термодинамических величин [7, 8]. В средах сложного, химически недостаточно определенного состава, а также в средах, содержащих малообратимые системы, окислительный потенциал имеет значение физико-химического или технологического параметра, величина которого в значительной степени определяет течение процессов, идущих в среде. [c.44]

    Поэтому в таких средах, как многие промышленные и биологические растворы, сточные воды, почвы и др., окислительный потенциал играет роль фактора среды , имеющего термодинамическое значение. Под фактором среды понимается параметр, величина которого зависит от состава и свойств среды и изменения которого могут вызвать изменения в химических процессах, протекающих в среде. Термодинамическое значение окислительного потенциала как фактора среды состоит в том, что в зависимости от его величины вещества находятся в растворе или в окисленном состоянии или в восстановленной форме, или в определенном соотношении окисленной или восстановленной форм. В соответствии с этим в растворе могут протекать различные реакции, в которых участвуют окисленная или восстановленная форма вещества. Так, например, при получении двуокиси хлора по метаноль-ному методу возможны две параллельные реакции с образованием или хлора или двуокиси хлора. Выход двуокиси хло- [c.44]

    Термодинамические методы используют для приблизительной оценки возможных пределов изменения параметров при осуществлении целевого превращения и для оценки вероятности осуществления той или иной из перечисленных реакций при этом превращении. Такие расчеты, помимо получения обычных физических и термохимических сведений, позволяют найти возможные побочные реакции и установить промежуточные стадии в основных процессах все устойчивые молекулы должны рассматриваться как возможные промежуточные или конечные продукты. Величины изменения свободной энергии по Гиббсу (AG) для некоторых реакций, протекающих при реформинге в присутствии пара и при окислении метана, приведены в параграфах 4.1 и 5.1. [c.199]

    С) стали и вытеснение ее атомами защитного газа (аргона), которые гораздо тяжелее атомов серы, на периферию плазменной дуги с температурой 2000 — 1000 °С, где атомы серы соединяются с кислородом в ЗОг, 50 и удаляются из зоны реакции в атмосферу. Процесс протекает при высокой температуре и интенсивном перемешивании расплавленного металла. Значительный температурный градиент оказывает влияние на поверхностное натяжение и усадку и приводит к изменению топографии поверхности переплавленного слоя металла. Испарение серы зависит от температуры плазмы, размера частиц, времени пребывания в плазме, физических свойств частиц плазмообразующего газа и ряда других факторов и с термодинамической точки зрения представляет переход вещества из одной фазы в другую, проходящий при постоянной температуре и неизменном давлении. Процесс получения максимального выхода серы в виде 5, 50, 50г, 5гО при минимальном выгорании легирующих элементов оптимизировали расчетным путем по минимальной загрязненности поверхности примесями (сульфидами, оксисульфидами). При предъявлении требований к чистоте поверхности и переплавленному слою подбирали режимы переплава таким образом, чтобы, варьируя температуру, соотношение компонентов защитного газа (Аг, О2), время пребывания металла в расплавленном состоянии, переплавленный слой металла был мало загрязнен различными примесями и это согласовалось с кинетикой окислительновосстановительного процесса. Применение первого вариационного принципа химической термодинамики для определения равновесных параметров многокомпонентных гетерогенных систем показало, что интенсивное окисление серы кислородом в газовой фазе происходит при высоких температурах (2500 — 3000 °С), которые достигаются при нагреве металла низкотемпературной плазмой в защитной среде, содержащей 95 % Аг + 5 % О2 (рис. 165). Процесс десульфирования путем переплава поверхности металла может быть представлен как ступенчатый, заключающийся в последовательном переходе атомов через различные фазы металл —пар с последующим окислением в области низких температур и удалении в атмосферу в виде молекул и атомов. Наряду с удалением из расплава 5, 502, 50 путем выноса их на поверхность жидкого металла происходит частичное растворение и измельчение неметаллических включений, что приводит к снижению балла по сульфидным включениям. Экспе- [c.392]


    В реальных условиях жидкофазного окисления углеводородов в среде растворителей возможны осложняющие факторы, на-лример образование промежуточных или побочных продуктов, которые могут, как и исходный растворитель, влиять на кинетические закономерности и механизм дальнейших реакционных лрёвращений, изменяя природу сольватации. Это в значительной степени затрудняет (а в ряде случаев делает невозможным) установление детальной природы сольватации реагирующих частиц, нахождение истинных кинетических и термодинамических параметров процесса. Результаты экспериментальных исследований показали [69]  [c.31]

    Начиная с 60-х годов этот подход получил особенно широкое развитие в работах Г. К. Борескова с сотр. Идея этих работ основана на возможности установления вытекающей из соотнощения Бренстеда—Поляни связи между изменением энергии активации реакции и изменением определенных термодинамических параметров каталитической системы. Первоначально этот подход, был успешно применен к исследованию активации молекулярного кислорода и разнообразных процессов глубокого окисления. Удалось выявить отчетливую зависимость каталитической активности от энергии связи поверхностного кислорода, которая позволяет направленно вести подбор катализаторов [31—32]. Именно Борес-кову и принадлежит идея обобщения всех теоретических и экспериментальных работ в данной области в единое целое, названное им теорией предвидения каталитического действия . [c.249]

    Рассмотрим подробнее некоторые реакции, представляющие особый интерес. Положительные величины AGr° реакций 2—4 указывают на устойчивость метана в присутствии водорода по отношению к распаду на углеводороды Сг. Отрицательные значения AGr° реакций 6а, 7а, 8а и 9а свидетельствуют о самопроизвольном протекании замещения атомов водорода в метане на атомы хлора однако из величин AGr° реакций 66, 76, 86 и 96 видно, что с увеличением числа атомов водорода, замещенных хлором, этот процесс постепенно становится все менее благоприятным. Величины AGr° реакций 11 и 37 свидетельствуют о возможности использования метана в качестве исходного сырья для синтеза углеводородов. Отрицательные значения AGr° реакций 14, 18 и 43 указывают на возможность образования Н2О2 в процессе окисления метана. Термодинамические параметры реакции 23 подчеркивают трудность осуществления синтеза уксусной кислоты из двуокиси углерода и метана и свидетельствуют о легкости протекания обратной реакции. Реакцию 32, представляющую собой мягкий метод хлорирования метана, можно использовать для замещения атомов водорода в молекуле метана на атомы хлора и получения таким путем любого хлорзамещенного метана. Сравнение окислительной способности различных веществ при взаимодействии с метаном связано с рассмотрением целого ряда родственных реакций. Так, реакции 59—62 представляют собой весьма жесткий метод хлорирования метана. Реакции 63—65 описывают взаимодействие с метаном бифункционального реагента значе- [c.187]

    Изучение процесса термического распада циклоалифатических гидропероксидов проводилось с использованием разбавленных растворов, что исключало образование ассоциированных форм гидропероксидов. Поскольку образование ассоциатов гидропероксидов, как правило, облегчает их распад, представляло интерес также сравнительное изучение процесса самоассоциации гидроперок-сидов циклоалканов g — С12 и гидропероксида циклогексана, в особенности процесса их димеризации. Количественные характеристики процесса димеризации, в том числе и термодинамические параметры, могут выявить влияние структурных особенностей гидропероксидов на этот процесс и в определенной степени объяснить различную устойчивость и, как следствие, различный выход гидропероксидов циклогексана и циклоалканов g — i2 в процессе окисления. [c.93]

    Белок может влиять также на переходное состояние, отличающееся от основных состояний как исходного, так и конечного продуктов. Результат этого влияния отражается на кинетике процесса (но не на его термодинамических параметрах). Как отметили Волли и Уильямс [222], белок может индуцировать такую компромиссную структуру, которая близка к структуре переходного состояния, и тем самым снижать энергию активации. Этот фактор может быть особенно важным, например, при переносе электрона, когда два состояния окисления иона металла характеризуются различными типами симметрии, как в случае тетраэдрического комплекса Си(1) и тетрагонального комплекса Си(П). Искажение обычной структуры может привести и к возрастанию энергии активации, а следовательно, к замедлению реакции. [c.242]

    Л. Я. Марголис (Москва, СССР). В докладах 34 и 35 рассйатриваются зависимости величин каталитической активности от энергий связи металл — кислород на поверхности катализатора или от изменения свободной энергии Гиббса процесса удаления кислорода из решетки окисла. Полученные зависимости каталитической активности от термодинамических параметров заставили многих исследователей считать, что окисление органических веществ протекает по окислительно-восстановительному механизму. Эти зависимости указывают на путь подбора катализаторов, но не могут раскрыть механизм реакций. [c.383]

    Можно показать, что основным параметром при определении стандартного потенциала гипотетического электродного процесса I -- - +е является потенциал ионизации радикала. Если прсдпопожить, что констангы скорости линейно коррелируют с термодинамическими величинами, то скорость окисления радикала должна сильно зависеть от потенциата ионизации. Используя потенциалы ионизации для выбранных модельных систем, для которых известно соотношение продуктов, образовавшихся из радикалов и ионов карбения, можно вывести правило, ценное для реакции Кольбе на платиновом аноде в метанольном растворе радикалы с потенциалами ионизации выше 8 эВ (в газовой фазе, определенные методом электронной эмиссии или фотоионизации) должны давать достаточно хороший выход продуктов сочетания радикалы с потенциалами ионизации ниже 8 эВ должны в значительной степени подиергатьсн дальнейшему окислению Поскольку имеются подробные таб.пицы потенциалов ионизации [48—50], то относительно просто делать качественные предсказания на этой основе [50]. [c.430]

    Разные соединения одного и того же элемента имеют различные термодинамические, физико-химические и- гидродинамические параметры (свободные энергии, коэффициенты ионной и молекулярной диффузии). Поэтому процессы массопереноса (растворение, ионный обмен, кристаллизация, диффузионные и конвективно-диффузионные перемещения вещества в растворах), составляющие основу формирования химического состава подземных вод, невозможно правильно интерпретировать и прогнозировать без знания форм переноса элементов. Именно эти формы определяют возможность, геологическую значимость процессов, а также их кинетику. Имеются и другие геохимические вопросы, правильное рещение которых невозможно без знания состояний элементов в подземных водах. Так, при оценке степени насыщения подземных вод карбонатом или сульфатом кальция использование в расчетах суммарных активностей кальция, карбонатов и сульфатов без вычета тех их частей, которые связаны в сложных ионных и молекулярных соединениях, часто приводит к ошибочным выводам о пересыщениях ими подземных вод. Суждение о мнимом пересыщении, подземных вод этими соединениями широко распространено в гидрогеохимической литературе. При образовании устойчивых комплексных соединений происходит смещение равновесий в геохимических процессах (растворении, выщелачивании, осаждении и соосажде-нии, сорбции, ионного обмена, окислении, восстановлении) в сторону водной фазы. При этом чем устойчивее комплексное соединение, тем сильнее эти смещения. Экспериментально установлено, что комплексообразование предохраняет элементы-гидролизаты (Ре, А1, Ве, Си и др.) от полного гидролиза, тормозит образование гидроокисных соединений и удерживает эти элементы в околонейтральных и даже щелочных водах. Геохимическими последствиями этого является расширение кислотно-щелочного диапазона водной миграции гидролизующихся элементов, [c.33]


Смотреть страницы где упоминается термин Термодинамические параметры процессов окисление: [c.59]    [c.198]    [c.21]    [c.356]    [c.16]    [c.16]   
Основные хлорорганические растворители (1984) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Параметры термодинамические

Процесс термодинамический



© 2024 chem21.info Реклама на сайте