Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация природа

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    Теория Бьеррума является приближенной, так как исходит из сферической модели ионов, не учитывает дискретной молекулярной природы растворителя, сольватации ионных пар и другие эффекты. Поэтому предпринимались попытки ее усовершенствования, в частности, Р. Фуоссом и Ч. Краусом. По мере накопления экспериментального материала появилась также необходимость ввести классификацию ионных ассоциатов, подразделив их на следующие типы а) контактные ионные пары, в которых катион и анион находятся в непосредственном контакте друг с другом б) сольватированные ионные пары, в которых катион и анион связаны друг с другом через одну молекулу растворителя в) сольватно разделенные (или рыхлые) ионные пары, в которых катион и анион удерживаются вместе электростатическими силами, но между ними имеется значительное неопределенное количество молекул растворителя г) катионные, анионные и нейтральные ионные тройники, так называемые кластерные образования типа С+А-С+, А-С+А-, А-С +А- и др. д) квадруполи, например С+А-С+А-и т. п. [c.46]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]

    Можно ожидать, что силы притяжения при отрицательной сольватации будут действовать на таких же расстояниях, как и силы положительного расклинивающего давления при положительной сольватации, так как природа их одинакова. Наличие свободной поверхностной энергии должно определять устойчивость не только как термодинамический фактор, обуславливающий принципиальную неустойчивость лиофобных коллоидных систем, но и как активная движущая сила процесса сближения частиц. [c.8]


    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Причины различной растворимости веществ пока не выяснены, хотя их связывают с характером взаимодействия молекул растворителя и растворенного вещества. Например, известно, что молекулярные кристаллы, структурными единицами которых являются молекулы с ковалентным неполярным типом связи (сера и др.), практически нерастворимы в воде, так как энергия разрушения кристаллической решетки настолько велика, что не может быть компенсирована теплотой сольватации, которая очень мала. [c.63]

    Отсутствие корреляции между этими величинами в случаях, когда взаимодействие реагентов с растворителем имеет в основном электростатическую природу, означает, что свободная энергия сольватации (величина, определяющая значение коэффициентов активности в уравнении Бренстеда — Бьеррума) и диэлектрическая постоянная являются независимыми функциями параметров, характеризующих электрические свойства молекул растворителя (дипольный момент, поляризуемость). [c.131]

    Это показывает, что подходящее расположение электрофиль-ной или нуклеофильной группы может ускорить реакцию. Аналогичное явление имеет место в активном центре фермента, например лизоцима. Конечно, важную роль играет и природа уходящей группы, а также сольватация, особенно при протекании реакции через переходное состояние. Реакции этого типа, называемые сопряженным гидролизом, встречаются при внутримолекулярном замещении стерические факторы могут замедлять реакцию. [c.17]

    Экспериментальные исследования и их анализ подтверждают совместное проявление процессов сокристаллизации и сольватации в смесях н-парафинов в присутствии ПАВ. Скорость этих процессов зависит от природы и полярности ПАВ, размера их алифатических цепей и других факторов, определяющих в общем случае депрес-сорную активность поверхностно-активного вещества. [c.168]

    Числа переноса зависят от природы электролита и растворителя, концентрации раствора и температуры. Числа переноса одного и того же иона в растворах различных электролитов различны. Знание чисел переноса имеет большое значение для теории растворов электролитов, позволяет вычислить эквивалентные электрические проводимости отдельных ионов, установить наличие комплексообразования, сольватации ионов и др. [c.202]

    Растворимость. От структуры жидкого раствора и сольватации зависит растворимость веществ, которая, следовательно, определяется природой растворителя и растворяемого вещества. [c.160]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]


    Опыты показали, что теплота набухания зависит от природы полимера и от природы растворителя. Например, набухание 1 кг ацетилцеллюлозы в трихлорэтане сопровождается выделением 47,70 кДж, а в бензиловом спирте — лишь 34,31 кДж. Определение теплоты набухания очень важно для характеристики степени сольватации (гидратации) высокомолекулярных соединений. [c.333]

    Знак АНп определяется соотношением теплот разрушения кристаллической решетки и сольватации (гидратации). Теплота растворения зависит от природы растворяемого вещества и растворителя, температуры и концентрации полученного раствора. [c.13]

    Еще более убедительны результаты исследований растворов полимеров в их собственных гидрированных мономерах. "В этом случае говорить о сольватации вообще бессмысленно, поскольку силы взаимодействия между большими и малыми молекулами полимера и мономера имеют одну и ту же природу и должны быть примерно одинаковыми. Однако и здесь наблюдались все явления, характерные для растворов полимеров. Все это опровергает представление о каком-то особом значении сольватации для устойчивости растворов полимеров и указывает на несостоятельность исходных положений мицеллярной теории. [c.433]

    Работа выхода катиона и энергия сольватации зависят от природы металла, иона и растворителя. Следовательно, соотношение между С/м. и ДЛя различных металлов и растворителей неодинаково (ср. диаграммы / и // на рис. 170). Процесс протекает самопроизвольно из состояния системы, характеризующегося большей энергией Гиббса, в состояние с меньшей энергией Гиббса (см. 70). Начальное направление электродного процесса при погружении металла в раствор определяется величинами и а следовательно, соотношением /м/ /ао у при и о м> /м (диаграмма /) начальный процесс будет заключаться в переходе металла в раствор  [c.471]

    Впервые понятие о сольватном слое, асфальтеновых частиц ввел Нейман [118]. Образование межфазных слоев в асфальтенсодер-жащих системах определяется природой и адсорбционными свойствами асфальтенов. Все асфальтены обладают низкой адсорбционной активностью по отношению к алканам. С увеличением степени ароматичности асфальтенов повышается их адсорбционная способность к аренам и гетероциклическим соединениям. Путем независимых калориметрических исследований установлено влияние состава дисперсионной среды, природы и концентрации твердых частиц асфальтенов на их склонность к сольватации, определяемой по теплоте сорбции асфальтенов аренами [126]. Так, теплота сорбции аренов асфальтенами вторичного происхождения значительно превышает соответствующую величину для нативных асфальтенов. Поверхность асфальтенов независимо от их природы энергетически неоднородна, мозаична. В отличие от поверхности асфальтенов вторичного происхождения, характеризующейся преобладанием лиофобных участков, поверхность нативных асфальтенов по характеру менее лиофобна, что существенно влияет на структуру образуемых вокруг асфальтеновых частиц сольватных слоев. [c.32]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]

    Важную роль играет также выбор растворителя и электролита фона. Применение растворителей с высокой диэлектрической постоянной (б>20) и прежде всего воды приводит к высоким диэлектрическим потерям энергии сверхвысокочастотного поля в резонаторе спектрометра ЭПР и ухудшает условия получения хорошо разрешенного спектра. С другой стороны, в растворителях с низким значением е возможно образование ионных пар, искажающее спектры. Этот эффект ослабляется при использовании в качестве электролита фона тетраалкиламмониевых солей. Влияние на спектр ЭПР природы растворителя и соли фона имеет и положительное значение, так как открывает пути для изучения процессов сольватации ион-радикалов и образования ионных ассоциатов. [c.226]

    Жидкий аммиак широко используется в препаративной органической химии как растворитель. Это объясняется тем, что, будучи основанием, аммиак хорошо растворяет карбоновые кислоты, а также спирты, фенолы и другие вещества, которые-образуют с ним водородные, связи. Благодаря низкой температуре кипения жидкий аммиак легко удаляется из реакционной среды путем испарения. В жидком аммиатке прекрасно растворяются щелочные (табл. 8) и щелочноземельные металлы, обладающие низким ионизационным потенциалом и высокой энергией сольватации. Природа растворов металлов в жидком аммиаке до сих пор еще не совсем ясна. Принято считать, что очень разбавленных растворах атом металла диссоциирует на-ион и электрон  [c.76]

    На кокфориационное равновесие окситетрагидропкранов кроме растворителя оказывают влияние также внутримолекулярные водородные связи, специфическая сольватация, природа заместителя, соседнего с аномерным центром, и т.д. [c.25]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Физико-химические свойства разбавленных растворов, такие, как осмотическое давление и давление пара растворов, температура кк[пеиия и температура кристаллизации растворов, значительно отличаются от тех же свойстн растворов более высокой концентрации. В разбавленных растворах относительная доля молекул растворителя, связанного в виде сольватов, невелика, образование таких растворов сопровождается небольшими тепловыми эффектами, поэтому свойства их можно считать весьма мало зависящими от природы растворенного вещества. В более концентрированных растворах увеличивается доля молекул растворителя, участвующих в процессах сольватации, уменьшается доля молекул несвязанного растворителя тепловые и объемные эффекты, сопровождаюпше процесс растворения, становятся более значительными, а сами свойства растворов в значительной степени зависят от химических свойств растворепного вещества. [c.93]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Лиофобные золи. Мы уже видели, что обязательными условиями устойчивости лиофобных золей являются очень зшшя размер частиц, наличие у них электричргких зарядов, одинаковых по знаку, и сольватация частиц. Первое предохраняет их от осе-даНИЯ, "второе и третье — от укрупнения в результате слипания, (коагуляции). Своим происхождением заряды коллоидных частиц обязаны адсорбционным процессам заряд появляется у частицы вследствие того, что частица данного коллоида пре имущее ственно (или избирательно) адсорбирует из раствора ионы того или иного вида в зависимости от природы коллоидного веш ества и от условий опыта. Чтобы выяснить ближе характер зтой адсорбции, обратимся прежде всего к результатам экспериментального изу- J чения структуры коллоидных растворов. [c.515]

    Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя. Обычно рассматривают два вида такого взаимодействия взаимодействие за счет короткодействующих сил (близкодействие) и за счет дальнодей-ствующих сил (дальнодействие). Близкодействие относят к сильному взаимодействию, дальнодействие —к слабому. В связи с этим принято считать, что вокруг частицы растворенного вещества расположены две сольватные оболочки — первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, находящиеся в непосредственной близости от частицы растворенного вещества и совершающие движение в растворе вместе с ней. Число молекул растворителя в первичной сольватной оболочке называется координационным числом сольватации данной частицы, значение которого зависит от природы растворенного вещества и растворителя. Во вторичную сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на больших расстояниях. Молекулы растворителя вторичной сольватной оболочки влияют на протекающие в растворе процессы за счет взаимодействия их с первично сольватированной частицей. Сольватация частиц растворенного вещества оказывает влияние как на тепловое движение молекул растворителя, так и на обмен между частицами растворителя, находящимися вблизи частиц растворенного вещества, и частицами растворителя более удаленными. Сольватация очень сильно проявляется в водных растворах гидратация) и особенно в водных растворах электролитов благодаря взаимодействию заряженных ионов с поляр- [c.342]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Имеются данные о незначительном влиянии природы растворителя ш скорость радикальных реакций. При этом обсуждается возможность сольватации свободных радика юв. В т(елом в.тиянне природы раствортеля на гемолитические реакции значительно ниже, чем на гетеролитические. [c.25]

    Легкость протекания гетеролиза определяется как внешними, т 1к и внутренними факторами. Внешние факторы - это, прежде нсего, протекание реакции в жидкой среде полярного растворителя, обеспечивающего ионизацию и сольватацию реагентов. Внутренние факторы -это стабильность образующихся ионов, зависящая от структуры соединения и характера заместителей (возможность делокализации зарядов, природа заместителей, индуктивный и мезомерньш эффекты). [c.282]

    Под сольватацией в молекулярных растворах понимают взаимодействие молекулярных или надмолекулярных объектов системы с молекулами растворителя, при котором не происходит никаких химических превращений молекул растворяемых частиц и растворителя, их ассоциирования и агрегирования, а образуется новый раствор с определенным химическим составом и структурой. Структура полученного раствора зависит во многом от природы растворителя и растворенрюго вещества, их концентрации, внешних условий и воздействий на систему. Под структурой раствора в зтом случае понимают соответствующую установившимся межмолекулярным взаимодействиям статистическую упорядоченность системы растворитель-растворенное вещество-продукты их взаимодействия в элементарном объеме при заданных условиях. [c.39]

    В исследованных смесях трикозан ведет себя как инертный наполнитель по отношению к нафталину. Наоборот, асфальтены относятся к активному наполнителю, так как на участке аб вызывают уменьшение теплоты плавления нафталина, причем на интенсивность процесса сольватации существенное влияние оказывает природа асфальтенов. В присутствии в смеси асфальтенов арланской нефти энергетические характеристики структурообразования выше, чем в случае асфальтенов гудрона западно-сибирской нефти. Это обусловлено большим количеством алифатических фрагментов в структуре асфальтенов арланской нефти, причем длина алифатических цепочек может достигать 35 атомов углерода. Асфальтены гудрона западно-сибирс-кой нефти содержат более короткие алифатические радикалы (3-4 атома углерода), и структура таких асфальтенов имеет более высокую степень ароматизации вследствие термического воздействия на нефтяную систему при получении гудрона. Это увеличивает скорость и уменьшает энергетические затраты в процессе сорбции такими асфальтенами молекул нафталина. [c.156]

    Ионы, существующие в растворе электролита, испытывают различные воздействия со стороны окружающих частиц и соверщают постоянные перемещения, которые в отсутствие внешнего электрического поля имеют хаотичный характер. Наложение электрического поля приводит к появлению действующих на ионы электрических сил, которые имеют определенное направление. В результате возникает преимущественное перемещение (миграция) положительных ионов к отрицательному электроду, а отрицательных ионов — к положительному. Это обеспечивает перенос электрических зарядов. Возникает электрический ток, величина которого зависит от заряда ионов, их размера, характера сольватации и других взаимодействий с окружающими частицами, что, очевидно, связано с природой электролита и растворителя, а также с концентрацией раствора. Кроме того, величина электрического тока зависит от приложенного напряжения, геометрического расположения и размеров электродов, которые непосредственно влияют на напряженность возникающего электрического поля, а следовательно, и на скорость направленного движения ионов. Средняя скорость упорядоченного движения и данного типа ионов, отнесенная к напряженности действующего электрического поля Е, называется подвижностью (иногда абсолютной скоростью) иона и = ь/Е и определяется лишь природой и концентрацией раствора, а от величины электрического поля не зависит. В поле с напряженностью = 1 В-см числовые значения и к V совпадают. [c.216]

    Прн отнесении частот в спектре необходимо учитывать условия регистрации спектра физическое состояние образца, химическую природу растворителя, концентрацию, псмпературу и т. д. Все эти факторы могут привести к смещению частот колебаний, приведенных в таблицах характеристических частот из-за влияния внешних (ассоциация, сольватация) и внутренних (электрические, стерические и др.) факторов. Наблюдаемые отклонения составляют обычно 10—20 см однако иногда достигают 50 см и больше. Интенсивности полос должны иметь ожидаемую величину, и все другие доступные данные, как химические, так и спектральные (ЯМР, УФ и др.), должны согласовываться с предложенной структурой. [c.202]

    Однако экспериментально на моделях Дерягиным с сотрудниками было показано, что даже значительное увеличение концентрации электролита (до 1 н. Na l) не уничтожает полностью энергетического барьера между частицами и на небольших расстояниях между ними ( 100А) существуют значительные силы отталкивания. Так как в этом случае невозможно говорить о силах электростатического отталкивания (отсутствует диффузная часть двойного электрического слоя), то Дерягиным введено представление о силах иной природы, по-видимому, связанных с сильной сольватацией поверхности и особой структурой образующихся сольватных слоев. Оба вида сил, как электростатического, так и сольватационного характера Дерягин объединяет под общим названием расклинивающего давления. [c.241]

    Рассмотрим работу внесения заряженной частицы г из вакуума внутрь оставшейся незаряженно ( сферы, лишенной также пространственно разделенных зарядов на поверхности (рис. У1.1,в). При умножении на постоянную Авогадро эта работа дает, т. е. химический потенциал частицы I в фазе а. Если,, например, фаза а представляет собой бесконечно разбавленный раствор, а частица / является ионом, то величина х/ обусловлена энергией ион-дипольного взаимодействия и равна химической энергии сольватации. Химическая энергия взаимодействия заряженной частицы с фазой также обусловлена электрическими по своей природе силами, но только более сложными, нежели кулоновское взаимодействие заряда с заданным полем. [c.113]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]


Смотреть страницы где упоминается термин Сольватация природа: [c.47]    [c.57]    [c.94]    [c.118]    [c.115]    [c.35]    [c.91]    [c.452]    [c.102]    [c.88]   
Аналитическая химия неводных растворов (1982) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте