Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм действия покрытий

    Механизм действия покрытия представляется в виде [c.17]

    Механизм действия покрытий на снижение склонности стали к коррозионному растрескиванию связан с разблагораживанием потенциала стали с покрытием. [c.85]

    МЕХАНИЗМ ЗАЩИТНОГО ДЕЙСТВИЯ ПОКРЫТИЙ [c.63]

    Таким образом, защитное действие покрытий проявляется в снижении скорости коррозии и зависит при прочих равных условиях от материала изоляционного покрытия, его толщины м конструкции. Со временем эффект защитного действия, как будет показано далее, снижается, поэтому длительное и стабильное функционирование механизма защитного действия покрытий — необходимое условие их эффективности. [c.46]


    В ряде технологических процессов, например, при производстве клея, некоторых красителей и т. д., создаются значительные осложнения вследствие возникновения пены. Добавки небольших количеств некоторых веществ, например, растекающихся масел, препятствуют ценообразованию. С практической точки зрения эти вещества можно рассматривать как поверхностно-активные, так как они превращают пенообразующую жидкость в пену. Однако физико-химический механизм действия таких веществ может быть различным в основе действия некоторых из них действительно лежит поверхностная активность, другие же просто образуют механическое покрытие на поверхности жидкости. [c.56]

    Цель работы — определение защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также установление механизма действия покрытия по значениям потенциалов окрашенного ц неокрашенного образца. [c.258]

    Как показали М. М. Гольдберг и Н. Д. Томашов, электрохимический метод можно применять для определения защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также для установления механизма действия покрытия по значениям потенциалов окрашен.юго и неокрашенного образцов в растворе [c.395]

    С начала 30-х годов механизм действия наполнителя на битумные дорожные покрытия изучали многие ученые. Проведенные исследования выявили две принципиально различные точки зрения инженеров дорожников. Одна группа считает, что введение наполнителя является методом повышения качества смеси при более тонком измельчении всей гаммы (по гранулометрическому составу) каменного материала, и он действует как заполнитель пустот между частицами более грубых фракций. В результате увеличения числа точек контакта между частицами повышается прочность дорожного покрытия. [c.210]

    Независимо от механизма действия, при правильном выборе наполнителя и уточнении необходимого его количества повышается сопротивление прогибанию битумного покрытия, его стабильность и сопротивление пластической деформации. Кроме того, благодаря наличию наполнителей снижается подвижность, повышается, когезионная прочность и долговечность связующего. Все это может иметь большое значение при использовании мягких битумов с высокой вязкостно-температурной чувствительностью. [c.211]


    В настоящей книге излагаются состояние и решение перечисленных задач, приводятся основные сведения о подземной коррозии трубопроводов и резервуаров, рассматриваются вопросы механизма защитного действия покрытий, действительные условия их службы, проблема прогнозирования изменения эффективности действия изоляционных покрытий. Освещаются основные методы защиты изоляционными покрытиями и средствами электрозащиты, а также технико-экономические аспекты ее. [c.5]

    Теоретический анализ, лабораторные исследования коррозионного процесса и коррозионных факторов, как и механизма защитного действия покрытий, не могут дать исчерпывающих исходных данных для решения задач, связанных с обеспечением долговечности изоляционных покрытий подземных трубопроводов. Необходимо также исследовать действительные условия службы изоляционных покрытий. Изучение этих условий, а также характера воздействия различных грунтовых факторов на покрытие важно для совершенствования существующих и создания новых покрытий с устойчивым комплексом свойств. Исходя из реальных условий можно определить требования к качественным и количественным характеристикам покрытий. [c.47]

    Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное вещество. Даже если в организме происходит отщепление лекарственной группы , поведение и функции полимерной основы м. о. иными, чем у исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фармакологич. действия собственно полимера практически не наблюдается и его можно считать биоинертным. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозаменители декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилового спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получе-. нию эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакологич. препаратов при совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-Л1ентоорганич. полимеров полисилоксанов, полимеров. [c.372]

    Механизм защитного действия металлических покрытий в наводороживающих средах связан как с его экранирующим действием к потоку водорода, так и с электрохимическим поведением стали с покрытием. Основные факторы, определ.яющие защитное действие покрытий в наводороживающих средах, показаны на рис. 19. [c.63]

    Электрохимический механизм защитного действия покрытия можно представить как суммарное действие различных процессов. Он связан с разрядом водорода на поверхности стали, общим количеством ионов водорода, участвующих в катодном процессе, и долей водорода, способного диффундировать в металл. Уменьшение возможности разряда ионов водорода на поверхности стали вследствие высокого перенапряжения на металле покрытия или уменьшения доли водородной деполяризации в катодном процессе способствует увеличению защитного эффекта металлических покрытий в наводороживающих средах. [c.70]


    На основании сведений о необратимых электродных потенциалах в первом приближении можно судить о механизме защитного действия покрытий. [c.52]

    Как показывает практика обследования состояния изоляции на действующем трубопроводе и результаты лабораторных исследований, основными видами разрушения покрытий в период эксплуатации являются образование видимых макротрещин, появление и развитие продольных и поперечных гофр и складок на покрытии относительно образующей трубопровода и образование различного рода микродефектов в покрытии, зачастую невидимых невооруженным глазом. Чаще всего имеет место смешанный механизм разрушения покрытий пО трем указанным видам, хотя преобладает в каждом конкретном случае, как правило, один из них, который [c.108]

    Рассматривается механизм коррозии металлов (без покрытий к защищенных лакокрасочными покрытиями) в агрессивных средах. Подробно описываются механизм действия пассивирующих пигментов и ингибиторов коррозии в лакокрасочных покрытиях на основе различных пленкообразующих, а также свойства и применение ингибированных лакокрасочных покрытий для защиты металлов от коррозии в нейтральных и агрессивных средах. Рассмотрены ускоренные методы коррозионных испытаний металлов. [c.2]

    Механизм действия масел на вредителей растений и их яйца основан на том, что они вызывают нарушение газового обмена (затруднен доступ кислорода) и водного баланса у насекомых и его яиц, нарушение покрытий (оболочек), что особенно опасно для яиц, в результате чего масла проникают в организм насекомого и яйцо, нарушают ряд ферментных процессов, приводят к коагуляции протоплазмы, разрушают ткани. Наиболее важным фактором является нарушение газового обмена. Это подтверждается высокой токсичностью масел с большим содержанием предельных углеводородов нормального и разветвленного строения, которые стойки к окислению и, следовательно, могут создавать устойчивые пленки, препятствующие обмену веществ в яйце или организме насекомого. [c.46]

    Это можно объяснить несколько иным механизмом действия осерненных смазок. Добавка серы не только повышает вязкостно-адгезионные свойства смазок, как это происходит и при термическом уплотнении жирнокислотной основы, но также значительно повышает антифрикционные свойства смазок за счет образования на поверхности металла или покрытия граничных слоев сернистых соединений, обеспечивающих значительное снижение коэффициента трения. Очевидно, медное покрытие обладает большей реакционной способностью по отношению к сере, чем поверхность углеродистой, а тем более нержавеющей стали, что и позволяет обеспечить более выгодные условия- деформации при. волоче-ции с серусодержащими смазками. [c.123]

    На основании изложенного механизм действия ингибиторов неокислительного типа можно представить следующим образом затормозив анодную реакцию ионизации металла благодаря образованию труднорастворимых соединений или непосредственного электрохимического окисления металла, эти ингибиторы смещают потенциал металла к таким значениям, при которых становится возможным окисление металла кислородом воды. При покрытии значительной части электрода труднорастворимым соединением [c.58]

    Если происходит пассивация электрода (такой механизм действия ингибиторов в нейтральных средах встречается чаще всего и является наиболее эффективным), то из-за сокращения активной поверхности электрода общая коррозия всегда уменьшается. Однако из этого совсем не следует, что интенсивность коррозии также падает. Все зависит от того, что уменьшается в большей степени — общая коррозия или активная часть электрода. Если степень покрытия электрода 0 пассивирующим окислом выше степени уменьшения суммарного коррозионного эффекта I, то интенсивность коррозии I должна возрасти. Степень уменьшения силы тока зависит не только от 0, но и от характера контроля скорости коррозионного процесса и поляризационных характеристик системы металл — электролит при протекании в ней катодной и анодной реакций. [c.89]

    Интересным фактом является возможность стабилизацип эмульсий с помощью высокодисперсных порошков. Механизм нх действия аналогичен механизму действия ПАВ. Порощки с достаточно гидрофильной поверхностью (глина, кремнезем и др.) стабилизируют прямые эмульсии. Гидрофобные порошки (сажа, гидрофобизированный аэросил и др.) способны к стабилизации обратных эмульсий. Частицы порошка на поверхности капель эмульсий располагаются так, что большая часть их поверхности находится в дисперсионной среде. Для обеспечения устойчивости необходимо плотное покрытие порошком поверхности частицы. Очевидно, что, если смачивание частиц порошка-стабилизатора средой и дисперсной фазой будет сильно различаться, то стабилизации не произойдет и весь порошок будет находиться в объеме фазы, которая его хорошо смачивает. [c.348]

    Важным фактором, характеризующим защитное действие покрытий, является проницаемость пленки для электролитов. Исследование переноса воды и водных растворов электролитов через полимеры дает возможность изучать механизмы этих процессов, оценивая значение параметров, необходимых для прогнозирования защитных свойств покрытий.  [c.69]

    Сложный характер процесса восстановления М—В-сплавов, его чувствительность к изменениям в составе раствора и избирательность в отношении природы осаждаемого металла уже на ранних стадиях использования в качестве восстановителя борсодержащих соединений вызвали необходимость постановки исследований, проливающих свет на детали механизма реакций завершающихся формированием соответствующих покрытий. Имевшиеся данные о химическом строении и свойствах аниона борогидрида давали указания на общность природы активного агента этого соединения и восстановителя, более глубоко изученного—аниона гипофосфита. Соответственно, противоречивый характер представлений о путях протекания и конечных продуктах окисления активного агента восстановителя — гидрид-иона (Н ), развитых в работах по исследованию процессов с участием гипофосфита, получил отражение и при описании механизма действия борогидрида. [c.146]

    Экспериментальное установление наличия структурных превращений в лакокрасочных покрытиях на стадии их получения и эксплуатации дает возможность изучения механизма защитного действия покрытий с позиций структурообразования на надмолекулярном уровне. [c.70]

    Изучение влияния исходной надмолекулярной структуры покрытий на их устойчивость к процессам старения позволило установить, что характер и плотность упаковки структурных элементов определяют механизм разрушения покрытий под воздействием эксплуатационных факторов. Закономерности образования надмолекулярных структур практически не зависят от условий старения покрытий. Изменение этих условий определяет лишь вид и степень разрушения покрытий, что, тем не менее, существенно сказывается на защитном действии покрытий. Старение покрытий в различных условиях эксплуатации проявляется в потере блеска, изменении цвета, мелении, растрескивании, отслаивании и возникновении подпленочной коррозии. Экспериментальные данные свидетельствуют о том, что практически все свойства покрытий обусловлены процессами структурных превращений, протекающих на молекулярном, топологическом, надмолекулярном и фазовом уровнях. [c.84]

    Некоторые методы могут иметь также смешанный механизм действия, так как они в соизмеримой степени тормозят несколько ступеней коррозионного процесса или наряду с этим снижают степень термодинамической нестабильности коррозионной системы. Сюда, например, могут быть в общем случае, отнесены различные органические покрытия, частично изолирующие изделия от коррозионной среды, частично тормозящие электродные процессы и увеличивающие одновременно омическое сопротивление. [c.46]

    Рнс. 2-3. Механизм действия анодного металлического покрытия (а) и развитие язвы в пористом катодном покрытии (б)  [c.69]

    Механизм действия неметаллических защитных покрытий состоит, главным образом, в отделении поверхности металла или какого-то другого конструкционного материала от коррозионной среды. Лишь некоторые виды лакокрасочных покрытий (содержащие цинковую или алюминиевую пыль, пассивирующие вещества, например окислы свинца, хромат цинка) предохраняют металлические поверхности от коррозии благодаря протекторному или пассивирующему действию. [c.55]

    Как показали М. М. Гольдберг и Н. Д. Томашов, электрохимический метод можно применять для определения защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также для установления механизма действия покрытия по значениям потенциалов окрашенного и неокрашенного образца в растворе электролита (например, в 3%-ном Na l). Схема простой установки для этих целей приведена на рис. 356. В течение испытаний измеряют поочередно величину [c.463]

    Первый вид обратной связи определяется зависимостью константы скорости реакции от степени покрытия поверхности адсорбцированными веществами. В основе механизма действия обратной связи лежит предположение о зависимости энергии активации различных стадий реакции от степени покрытия поверхности реагирующими веществами. В этом случае при изменении степени покрытия поверхности реагирующими веществами скорость реакции может изменяться в значительных пределах, являясь на одном промежутке времени больше скорости адсорбции, на другом — меньше, что и приводит к периодическому изменению концентраций реагирующих веществ на поверхности катализатора. Данный подход положен в основу описания автоколебаний в реакции окисления окиси углерода на платиновом катализаторе [132]. При этом было учтено изменение энергии активации со степенью покрытия поверхности реагирующими веществами не только стадии образования продукта реакции, но и стадий десорбции окиси углерода и адсорбции кислорода. [c.318]

    Механизм действия раствора соли на бентонит, набухший в растворах полимеров, например КМЦ, гипана и других, может быть объяснен, исходя из учения П. А. Ребиндера [70]. Глинистая частица, набухгпая в растворе полимера, покрыта пленкой лиогеля, сильно соль-ватированной дисперсионной средой (водой) и диффузно переходящей в межмицелляриую жидкость. В первый пе])иод контакта происходит разру ]пение гидратных оболочек [c.240]

    Однако в кажущемся противоречии с этим механизмом действия ПАОВ пересечение i, -кривых восстановления аниона ЗгОв в растворах камфары и оксигомоадамантана наблюдается при потенциале нулевого заряда, отвечающем чистой поверхности ртути, а не покрытой адсорбированным монослоем ПАОВ (см. рис. 5.16). Этот результат можно объяснить туннелированием электрона к реагирующей частице через поры в адсорбционном слое, которые заполнены молекулами воды, причем реагирующая частица в поры не проникает, а находится против них с внешней стороны монослоя. В этом случае перенос электрона не требует затраты работы, связанной с изменением электрического поля у электрода за счет адсорбции дипольных молекул ПАОВ, и ток не чувствителен к сдвигу потенциала нулевого заряда. В рамках этого механизма находит объяснение и вытекающая из уравнения (5.44) зависимость скорости разряда при почти полном заполнении поверхности электрода ПАОВ от (I—0), т. е. от числа пор в адсорбционном слое. В самом деле, с увеличением концентрации ПАОВ в растворе число пор сокращается и пропорционально уменьшается ток, обусловленный переносом через них электронов. [c.185]

    Приведенный механизм действия добавок экспериментально может быть подтвержден линейной зависимостью между током обмена и степенью покрытия элек- [c.375]

    Механизм действия структурообразующих промоторов состоит в закреплении неравновесной структуры катализатора — сохранении пересыщения (избыточной свободной энергии). Промотор препятствует рекристаллизации, стабилизирует неоднородную поверхность, увеличивает удельную поверхность. Например, при синтезе аммиака, после восстановления магнетита Рез04, катализатор (железо) имеет вид губки, состоящей из зерен железа, покрытых тонкой пленкой АЬОз, препятствующей сращиванию кристалликов. Трудновосстанавливаемые окислы, вводимые в восстанавливаемую окись, стабилизируют структуру образующегося металла. [c.221]

    Теоретическая модель пленкообразующих ингибированных нефтяных составов — энергетические взаимодействия в динамических системах воздух —электролит —металл —ПИНС в растворителе и в динамическо-статической системе воздух — вода — металл — пленка покрытия представлены на рис. 4. При разборе теоретической модели и механизма действия ПИНС оценивают следующие состояния. [c.46]

    В отечественных товарных пленкообразующих составах применяют в основном смеси ингибиторов донорного и экранирующего механизмов действия. В составе покрытия ВЗМ-МЛ-1 используют ингис ртор АКОР-Ю или алкилбензолсульфонат кальция и окисленный петролатум, в продукте НШ-МЛ-алкилбензолсульфонат кальция и буроугольный воск, который содержит монтановую кислоту. Некоторые составы содержат сульфонат бария и окисленный петролатум [31]. [c.19]

    Более перспективны составы, при разработке которых использовали принцин сочетания ингибиторов донорного, акцепторного и экранирующего механизмов действия. При этом достигается синергетический эффект экранирующий ингибитор обеспечивает быстродействие и водовытеснение, а ингибиторы донор и акцептор - образование хемосорбционных слоев на анодном и катодном участках металла в случае протекания электрохимической коррозии. Затем хемосорбционные слои достраиваются ингибитором экранирующего типа, образуя при этом структуру "сэндвича". В качестве примера можно привести состав слег-Зцгющего покрытия 1% амида масляной кислоты, 4% сульфоната бария [c.20]

    ИЛИ с токсичностью для грибов выделяющегося в этой реакции тиофосгена. Разумеется, такое представление является упрощенным, поскольку точный механизм действия фунгицидов данной группы неизвестен. Тем не менее идея о том, что фунгицидная активность каптана обусловлена присутствием в его молекуле фрагмента ЫЗССЬ (одно время полагали, что токсофором здесь служит имидный атом азота), привела к получению ряда родственных соединений, в том числе фолцида и дихлофлуанида . Каптан и его аналоги высокоактивны, обладают широким спектром действия и находят применение для борьбы с паршой яблони и серой гнилью земляники, а также в качестве покрытий семян, уничтожающих патогенные организмы, находящиеся внутри семян и в почве. [c.489]

    Механизм формирования покрытия при этом способе окрашивания заключается в потере растворимости плен-кообразователем вследствие взаимодействия с ионами металла, образующимися под действием композиции для автофореза. [c.89]

    Механизм образования покрытий сложен. Предполагают, что при неупругнх столкновениях электронов с мономерами образуются возбужденные молекулы, ионы, радикалы, к-рые адсорбируются на твердой подложке и взаимодействуют друг с другом с образованием полимерных пленок. Действие ионов н электронов на полимер приводит, в свою очередь, к образованию макроионов и макрорадикалов п нротеканню в пленке процессов сшивания и деструкции. [c.9]

    Исходя из этих соображений, ненабухающие (неэлектропроводные) изолирующие органические и неорганические покрытия, а также стекло-эмали и футеровки, следует рассматривать как методы, повышающие термодинамическую стабильность системы. Если эти покрытия не сплошные, а пористые, то это утверждение относится только к доли металлической поверхности, исключенной от соприкосновения с коррозионной средой. Наоборот, лакокрасочные покрытия, набухающие (проницаемые для ионов) правильнее относить к методам защиты за счет повышения катодного, анодного или омического контроля. Более точная идентификация покрытий по механизму их действия станет возможной только после детального и количественного изучения механизма их тормозящего действия на коррозионный процесс и количественного определения контролирующего фактора для каждого вида покрытия. В тех случаях, когда количественных исследований механизма защитного действия покрытия еще нет, мы будем з словно относить их действие к изоляции металла от коррозионной среды, т. е. к повышению термодиналш-ческой стабильности системы. [c.8]


Смотреть страницы где упоминается термин Механизм действия покрытий: [c.144]    [c.180]    [c.372]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.206 , c.207 , c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2025 chem21.info Реклама на сайте