Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тирозин активном центре

    Ферменты бывают одно- и двухкомпонентными. Однокомпонентные ферменты (простые белки, протеины) состоят только из белка, обладающего каталитическими свойствами. Это свойство в них проявляют чаще всего остатки серина, гистидина, триптофана, аргинина, тирозина, аспарагиновой и глютаминовой кислот. Свободные радикалы (—NH2, —NH, —5Н, СООН и др.) этих аминокислот и составляют активный центр, выполняющий ту же функ- [c.115]


    В растениях -тирозин—аммиак-лиазе обычно сопутствует -фенилаланин—аммиак-лиаза, которая присутствует в значительно меньших количествах [74]. В кукурузе лишь один фермент ответственен за элиминирование аммиака как из -фенилаланина, так и из -тирозина это означает, что с обоими субстратами взаимодействует один и тот же активный центр фермента [80]. -Тирозин—аммиак-лиаза действует так же стереоспецифично, как и сопутствующий ей фермент, ответственный за превращение -фенилаланина реакция протекает с удалением 3-рго-(S)-водородного атома (см. схему 45) [81]. [c.712]

    Рассмотрим характер конформационных изменений, возникающих при комплексообразовании карбоксипептидазы А с субстратоподобным ингибитором [15]. В активном центре свободного фермента (см. рис. 5) имеется система водородных связей (пунктир), которая простирается от Aгg-145 через амидные связи полипептидной цепи (01и-155, А1а-154, 01п-249) и молекулу воды (она не указана на рис. 5) до фенольного гидроксила Туг-248. При контакте этого же фермента с квазисубстратом глицил- -тирозином (см. рис. 7) электростатическое взаимодействие свободной карбоксильной группы квазисубстрата с гуанидиновой группой Aгg-145 (пунктир) вызывает смещение последней на 2 А (по сравнению с ее положением в свободном ферменте). Более того, это смещение одного остатка влечет за собой нарушение всей системы водородных связей, что приводит к повороту боковой цепи Туг-248 с перемещением ее фенольного гидроксила на 12 А. В результате между ней и амидным атомом азота в молекуле квазисубстрата образуется водородная связь (пунктир на рис. 7). [c.24]

    Рнс. 7. Связывание глицил-/.-тирозина (строение его молекулы показано жирно) в активном центре карбоксипептидазы А (сравни с рис. 5) [15] [c.20]

    В зависимости от свойств фермента механизм действия гистидин-сериновой пары в активных центрах гидролаз может изменяться довольно сильно. Интересна в этом отношении ацетилхолинэстераза (КФ 3.1.1.7), в активном центре которой при катализе осуществляется обратимый перенос заряда с участием фенольной группы тирозина. [c.164]

    Сочетание рентгеноструктурных и химических данных позволило идентифицировать группы, связывающие 7п в активном центре. Среди них два имидазола, принадлежащие к остаткам гисти-днна-б9 и -196, и карбоксильная группа глутаминовой кислоты-72. Ион цинка можно обменивать на ионы других металлов, вновь полученные металлоферменты обладают собственными характерными реакционными способностями (или не обладают вовсе)- в отнощении амидных (и сложноэфирных) субстратов, но апофер-мент, не содержащий иона металла, полностью неактивен, как и следует полагать, если ион металла играет важную роль в катализе. Современные взгляды на механизм действия фермента частично опираются на химические данные, но особенно на кристаллографические работы, включающие трехмерные структуры не только нативного фермента, ио также его комплекса с глицил- -тирозином, полученным при диффузии дипептида в кристаллы фермента [78]. [c.502]


    В состав активных центров многих ферментов входит ограниченное число аминокислотных остатков. К ним относятся гистидин, тирозин, цистеин, серин, лизин и в меньшей степени некоторые другие аминокислоты. [c.64]

    Из анализа этих данных следует, что в каталитическом акте принимает участие группировка с рКь 6,48, которая при образовании комплекса Михаэлиса теряет способность к ионизации, но освобождается после отщепления холина. Аналогично ведет себя вторая группировка активного центра, имеющая в исходном ферменте рКа 9,35. Величине рК основной группы наиболее близка к значению рК имидазольной группы гистидина. Кислотная группа с рК 9,35 может представлять ОН-группу тирозина, либо 5Н-группу цистеина. Таким образом, из данных Лейдлера и Крупки следует, что рк тех же группировок в ацетилированном ферменте отличается от значений рК в исходном ферменте. [c.183]

    Каталитическое действие ионов меди сильно меняется при их ассоциации с соответствующими ферментами. Например, ионы меди входят в состав активных центров различных оксигеназ, катализирующих с уникальной селективностью мягкое окисление различных субстратов. Так, в присутствии тирозиназы (Си-содержащей оксидазы) фенилаланин окисляется кислородом воздуха до тирозина. Таким образом, ионы Си в соответствующем окружении являются эффективным агентом переноса электронов между этими реагентами. [c.146]

    Гидратация холина в области гидроксильной группы приводит к его десорбции с фермента, после чего гидролиз ацетилированного фермента осуществляется по схеме общего основного катализа анионом тирозина с обратной передачей электрона по цепи затронутых реакцией химических связей и регенерацией исходной структуры активного центра. [c.165]

    Согласно представлениям, которые сложились в гомогенном катализе, к каталитически активным радикалам бёлка относятся нуклеофильные группы (такие как имидазол гистидина, оксигруппы серина или тирозина, тиоловые группы цистеина, е-аминогруппы лизина, ионизованные карбоксилы аспарагиновой и глутаминовой кислот и др.) и электрофилы (ион имидазолия, неионизованные карбоксильные группы, ионы металлов и т. п.). В первичной структуре молекулы фермента группы активного центра обычно удалены друг от друга (см. рис. 1). Однако в третичной структуре аминокислотные остатки, принимающие участие в катализе, некоторым образом фиксированы [c.17]

    Константы равновесия при образовании комплекса с активным центром химотрипсина производных Ы-ацетил-1-тирозина H0 aH4 H2 H(NH 0 Hз) (0)X [c.133]

    Взаимодействию фермента с субстратом предшествует сближение и ориентация субстрата по отношению к активному центру фермента. Затем образуются фермент-субстратные комплексы, реальное существование которых может быть зафиксировано различными способами. Наиболее наглядным и эффективным является метод рентгеноструктурного анализа. В качестве примера можно привести идентификацию фермент-субстратного комплекса карбоксипептидазы А и ее субстрата глицил-ь-тирозина. Метод дает возможность не только установить сам факт образования комплекса, но и определить типы связей. Более простым, но достаточно эффективным методом является спектральный анализ фермента и соответствующего фермент-субстратного комплекса. Таким образом, бьши, в частности, идентифицированы фермент-суб-стратные комплексы для ряда флавиновых ферментов. В последние годы широкое распространение получило применение синтетических субстратов, благодаря которым можно моделировать ряд стадий ферментативного процесса, в том числе и связанных с образованием фермент-субстратного комплекса. [c.69]

    Для объяснения этих фактов активный центр химотрипсина представляют обычно (в развитие идей школы Нимэнна [55, 64]) состоящим из участков, комплементарных по отношению к отдельным фрагментам молекулы специфического субстрата [7, 59, 65]. Движущая сила сорбции фрагмента К на ферменте — это гидрофобное взаимодействие. Фактически образование комплекса фермент — субстрат обусловлено тем, что боковая гидрофобная субстратная группа подвергается термодинамически выгодной экстракции из воды в органическую среду белка (см. 4—6 этой главы). Молекулярная модель активного центра была предложена Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Размеры гидрофобной полости в районе активного центра составляют (10—12) х(5,5—6,5)Х(3,5—4) А. Эти размеры достаточны, чтобы вместить боковую цепь триптофана или тирозина, но вместе с тем форма полости делает возможной только лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.134]

    В таблице 17 приведена рН-зависимость гидролиза амида К-ацетил-Ь-фенилаланил-1-тирозина, катализируемого пепсином [12]. Определить значения рК групп активного центра свободной формы фермента, принимающих участие в реакции. [c.234]


    Различают Г. специфичные к НАД, НАД и НАДФ или только к НАДФ. Фермент имеет мол. м. 210-480 тыс. и обычно состоит из 4 или 6 одинаковых субъединиц. В активном центре содержатся остатки лизииа, тирозина и цистеина. Третичная структура характеризуется наличием доменов с мол. м. 20 тыс. Известна первичная структура нескольких Г. Оптим. каталитич. активность при аминировании в области pH 7,5-8,5, при дезаминировании 8,5-9,5. [c.587]

    Сорбция субстрата в активном центре а-Х, обеспечивается гвдрофобной полостью. Ее размеры 1,0x0, 5x0,4 нм оптимальны для связывания боковых цепей остатков гвдрофобных аминокислот (триптофан, фенилаланин, лейцин, тирозин), а конфигурация допускает лишь определенную ориентацию субстрата. Механизм каталитич. гвдролиза включает стадию сорбции субстрата, расщепления пептвдной связи с образованием ацилфермента и послед, переноса ацильной фуппы на нуклеоф. акцептор. [c.263]

    Инактивация фермента наблюдается при модификации карбоксильных фупп, а также остатков арганина, гастидина и тирозина. В непосредственной близости от активного цен-тоа Э. из дрожжей расположен остаток цистеина-247, модификация к-рого приводит к инактивации фермента. Однако в ферментах животного происхождения в этом положении находится остаток валина и нет данных об участии остатков цистеина в формировании активного центра. [c.481]

    Предшественники (зимогены) — пепсиноген, трипсиноген и химо-трипсиноген получены в чистом виде. Активация заключается в удалении небольшого пептидного фрагмента и катализируется либо активной формой самого фермента, либо энтерокиназой, другим ферментом, имеющимся в пищеварительном тракте. При превращении трипсиноге-на в трипсин с N-конца белка отщепляются гексапептид вал— (асп)4 — лиз и N-концевой аминокислотой становится изолейцин (Нейрат , 1955). Активация других зимогенов более сложна. Ранние работы Бергмаина (1937) на простейших модельных пептидах показали, что ферменты избирательно расщепляют определенно пептидные связи. Пепсин, трипсин и химотрипсин известны как эндопептидазы, так как они расщепляют пептидные связи, расположенные внутри молекулы. Пепсин расщепляет амидные связи, образованные аминогруппами фенилаланина или тирозина химотрипсин расщепляет связи, образованные карбоксильными группами этих ароматических аминокислот. Трипсин расщепляет амидные связи, образованные карбоксильными группами основных аминокислот (лиз, арг). Эти протеолитические ферменты расщепляют также эфиры аналогичной структуры. Во всех случаях затрагиваются только пептиды, образованные -аминокислотами. Предположение Михаэлиса (1913), что реакции, катализируемые ферментами, проходят через стадию образования промежуточного фермент-субстратного комплекса, были подтверждены всеми последующими работами. С большой очевидностью показано, что каталитическая активность определяется небольшим участком фермента, так называемым его активным центром. [c.697]

    Обнаружено, что существенная для связывания карбоксильная группа субстрата образует солевой мостик с гуанидиновой группой аргинина-145, тем самым, а также предпочтительными положениями связывания боковых радикалов, приводя подлежащую расщеплению амидную связь в контакт с атомом 2п. Теперь единственными другими функциональными группами, близкими к этой амидной связи, являются карбоксильная группа глутаминовой кислоты-270, которая (как и аргинин) сдвигается на 0,2 нм по сравнению со свободным ферментом, и фенольный гидроксил тирозина-248. Последняя группа не является одной из пяти групп, которые, как полагают, обычно участвуют в ферментативном катализе. Имеются также химические доказательства важности тирозина в карбоксипептидазе. Примечательно наблюдение, что эта группа не содержится вблизи цинка активного центра нативного фермента. Связывание глицил-тирозина, однако, вызывает весьма существенный конформационный сдвиг, в процессе которого фенольная группа тирозина-248 сдвигается не менее, чем на 1,2 нм с поверхности белка к новому положению вблизи пептидной связи субстрата. В результате этого движения происходит закрывание углубления, в котором находится активный центр, так что последний, по-видимому, не находится более в равновесии с растворителем. [c.502]

    Aj Требования, которым удовлетворяют активные центры ферментов. Активный центр фермента обычно представляет собой карман на поверхности фермента, выстланный боковыми цепями аминокислот, необходимыми для связьшания субстрата и катализа его химического превращения. Молекула карбоксипептидазы, последовательно отщепляющей С-концевые аминокислотные остатки от субстратов (пептидов), состоит из одной полипептидной цепи (307 аминокислотных остатков). Три главные каталитические группы в активном центре-это аргинин 145, тирозин 248 и глутаминовая кислота 270 (номер указывает положение аминокислоты в аминокислотной последовательности фермента). [c.269]

    Этим функции белка как фермента или апофермента скорее всего не исчерпываются. Все рассмотренные ме-чанизмы предполагали достаточно статичное расположение функциональных групп белка в активном центре Это не совсем верно. Взаимодействие с субстратом нередко сопровождается изменением конформации белковой молекулы, и согласно теории, выдвинутой Кошландом, направленные конформационные изменения белка являются важным фак1чэром ферментативного превращения. В отдельных случаях такие изменения зарегистрированы с помощью рентгеноструктурного анализа. Например, карбоксипептидаза А была подвергнута рентгеноструктурному анализу как в отсутствие субстрата, так и в комплексе с глицил-1/-тирозином. Полость, в которой находится активный центр, существенно сужается при связывании этого субстрата, т.е, наблюдается отчет ливый конформационный переход. Кроме того, широко дискутируется и имеет в отдельных случаях убедительные подтверждения гипотеза, согласно которой фермент фиксирует субстрат в конс юрмации, существенно более близкой по своей геометрии к активированному комплексу реакции, чем конформация субстрата, преобладающая у несвязанных молекул. Это, естественно, должно приводить к снижению активационьюго барьера реакции и способствовать существенному ускорению превращения. [c.208]

    Такие направленные изменения в белках (белковая инженерия) стали важным инструментом для установления роли отдельных аминокислотных остатков в формировании пространственной структуры белка и выполнении им своих функций. В качестве примера можно привести результаты исследования роли остатка тирозина-248, входящего в активный центр карбоксипептидазы А (см. 6.1). После установления пространственной структуры этого фермента с помощью рентгеноструктурного анализа высказывалась точка зрения, что гидроксигруппа этого остатка принимает участие в подаче протона на атом азота гидролизуемой пептидной связи и одновременно в удалении протона от молекулы атакующей воды. Однако, когда методом сайт-специфичного мутагенеза была осуществлена замена этого остатка тирозина на фенилаланин, оказалось, что каталитичесюш свойства фермента практически не изменились. Таким образом, роль гидроксигруппы тирозина-248 в катализе не подтвердилась. [c.306]

    Далее происходит синхронный электромерный сдвиг и переход протона к холину с образованием ацетилированного по гидроксилу фермента и протонированного имидазола [141]. Следующий элементарный акт с участием воды может произойти лишь после того, как молекула холина покинет анионный центр фермента. Об этом свидетельствуют результаты изучения влияния холина на деацетилирование холинэстеразы, полученные Крупкой и Лейдлером, а также А. П. Бресткиным и сотрудниками [179]. По-види-мому, для успеха атаки воды необходимо новое изменение конформации активного центра, которое наступает после диссоциации комплекса фермент — холин и восстановления отрицательного заряда анионной группировки. Молекула воды образует связь с карбонильным кислородом и кислордом тирозина, после чего происходит обратный электромерный сдвиг и переход протона от воды к тирозину и от имидазола — к гидроксилу серина. При этом выделяется второй продукт реакции — уксусная кислота — и регенерируется фермент в исходной конформации. [c.239]

    Полоса поглощения 360 нм (s=2790 М- см ) неионизован-ной формы N-ацетил-З-нитротирозина смещается в слабо кислой среде в область 427 нм (е = 4100 М см" ), становясь при ионизации более интенсивной (рК = 7,0) изобестическая точка находится при 381 нм (б = 2200 М см" ). При обработке карбоксипептидазы 64-кратным молярным избытком ТНМ нитруются 6,7—7,1 из 19 остатков тирозина. Однако при 4-кратном молярном избытке нитрование идет лишь по одному остатку, при этом пептидазная активность снижается до 10%, а эстеразная возрастает до 170% [49]. При действии ТНМ в присутствии р-фенил-пропионата, ингибитора карбоксипептидазы, ферментативная активность не изменяется. На основании этого было сделано предположение об участии остатка тирозина в работе активного центра. [c.354]

    Избирательное фосфорилирование специфического остатка серина в так называемых сериновых протеиназах , таких, как химотрипсин, трипсин и тромбин, впервые осуществлено Янсеном с сотр. [167—169], применившим в качестве реагента диизо-пропилфторфосфат (ДФФ). Воздействие на эти ферменты мочевины [170—171] или фотоокисление (в присутствии метиленового синего) остатка гистидина активного центра, близкого остатку серина [85, 95], приводит к тому, что такие белки уже не удается модифицировать с помощью ДФФ. ДФФ не инактивирует бромелайн, папаин или така-амилазу А [172], поскольку эти ферменты не принадлежат к группе сериновых протеиназ вместо остатка серина они имеют в активном центре остаток цистеина. С помощью ДФФ в них можно фосфорилировать некоторые остатки тирозина, но не 5Н-группу активного центра [56, 173]. Напротив, -нитрофеннлацетат (НФА) ацетилирует 5Н-группу глицеральдегид-З-фосфатдегидрогеназы и тем самым инактивирует этот фермент [174, 175]. [c.367]

    Активный центр химотрипсина может быть ковалентно помечен также специфическим субстратом, 1М-ацетилтриптофаном. Поскольку химотрипсин предпочтительно расщепляет пептидные связи, образованные остатками триптофана и тирозина, этот эксперимент является веским доказательством в пользу гипотезы о существовании ацилфермента. [c.204]

    Липскомб и сотр. [29, 188, 189] определили структуру КПА с точностью до атомного разрешения, что позволило детально описать третичную и вторичную структуры фермента. Методом рентгеноструктурного анализа, частично с применением разностного метода Фурье при изучении субстратов и ингибиторов, связанных с ферментом [29, 195, 1961, были получены детальные сведения о структуре и вероятном пути ферментативной реакции. Для иллюстрации расположения области активного центра КПА относительно остальной молекулы на рис. 18 изображена структура полипептидной цепи. Как показано на рис. 19, потенциальными каталитическими группами фермента в соответствии с данными рентгеноструктурного анализа являются следующие 1) тирозин-248 — вероятный донор для NH-группы пептидной связи, чувствительной к гидролизу, 2) ион Zn(Il), связывающий карбонильный атом пеп- [c.76]

    Участие различных видов сил взаимодействия подтверждает и изучение химического строения активного центра антигаптенных антител. Так, связывание отрицательно заряженного гаотена 3-нитро-4-окси-5-йодофенил-ацетата происходит за счет включения в комбинационный участок антитела положительно заряженного аргинина [102], а связывание гидрофобной динитрофенильной группы — за счет гидрофобного тирозина [139]. Более [c.47]

    Хотя остаток Туг-198 и удален от расщепляемой пептидной связи, он может участвовать в вандерваальсовых взаимодействиях с субстратами, большими, чем глицилтирозин (рис. 15.3 и 15.4). Боковые цепи других остатков тирозина, расположенных в районе активного центра, направлены в сторону от участков присоединения субстрата. Таким образом, второй остаток этой аминокислоты, который, судя по результатам модификации, участвует в образовании активного центра, вероятно, является остатком 198. Иодфенилпропионат присоединяется в кристаллах КПА к центру, расположенному вблизи фенольной группы Туг-198 (рис. 15.10). Если фенилпропионат связывается аналогичным образом, то становится понятным влияние этого ингибитора на модификацию. Высокую реакционную способность остатков Туг-198 и Туг-248 можно частично объяснить тем, что они находятся в контакте с окружающим растворителем. Кроме того, рК нитруемого остатка тирозина меньше, чем р/С остальных [112]. [c.538]


Смотреть страницы где упоминается термин Тирозин активном центре: [c.713]    [c.244]    [c.210]    [c.322]    [c.445]    [c.84]    [c.513]    [c.244]    [c.242]    [c.369]    [c.372]    [c.635]    [c.645]    [c.245]    [c.210]    [c.369]    [c.212]    [c.537]    [c.553]    [c.245]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.537 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активный центр

Тирозин

Тирозин тирозин



© 2025 chem21.info Реклама на сайте