Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал дипольный

    X — удельная электропроводность ц — химический потенциал дипольный момент  [c.4]

    Дипольный скачок потенциала образован ориентированными диполями воды и полярных групп липидных молекул. На оснований измерений граничного потенциала монослоев различных липидов был сделан вывод, что гидрофобная область БЛМ заряжена положительно на несколько сот милливольт по отношению к потенциалу водных растворов у границы с мембраной. Принято считать, что в отличие от поверхностного потенциала дипольный потенциал не зависит от pH и ионной силы водного раствора. [c.111]


    Другая причина возникновения межфазных скачков потенциала связана, как отмечалось выше, с взаимным наложением уже существующих на открытых фазах дипольных слоев и с их модификацией. Так, если незаряженный металл привести в контакт с раствором, то поверхностный потенциал на границе металл — раствор обязательно будет равен поверхностному потенциалу [c.28]

    Сопоставляя данные, приведенные в табл. 4.3, с такими характеристиками металлов, как первый потенциал ионизации, работа выхода электрона, радиус иона, электроотрицательность, сродство к электронам и стандартный электронный потенциал в водных растворах, можно прогнозировать энергетические взаимодействия активных групп маслорастворимых ПАВ и металлов, а также ориентировочно оценивать дипольный момент и относительную степень ионности металлсодержащих маслорастворимых ПАВ. [c.202]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]

    Модель межмолекулярного потенциала SP [338] использует три заряда, расположенных на атомах водорода и кислорода. Так же как и в модели ST2, между молекулами воды действует потенциал 6-12, центрированный на атомах кислорода. Для определенных параметров модели выполнялась серия пробных расчетов с целью минимизировать отклонение рассчитанных величин от данных экспериментальных измерений. В результате получен дипольный момент, равный 2,27 Д, энергия водородной связи равна 27,6 кДж/моль при равновесном расстоянии 0,276 нм между атомами кислорода в димере воды. [c.120]

    Ориентированная адсорбция незаряженных полярных или поляризуемых частиц на границе раздела фаз с образованием двойного электрического слоя в пределах одной фазы адсорбция молекул воды (рис. 106, э) на металле ориентация дипольных молекул у поверхности раздела жидкость —газ (рис. 106, и) — адсорбционный потенциал. [c.150]


    Потенциал ионизации, усредненный по числу валентных связей металла в решетке окисла Молярный дипольный момент Сумма угловых напряжений Молярная магнитная восприимчивость Структурный фактор [c.167]

    Электростатическая составляющая обусловлена возникновением доннановского потенциала, т. е. электрическими характеристиками раствора и ионита (заряды ионов, диэлектрическая проницаемость, дипольный момент растворителя), концентрацией раствора, степенью превращения (емкостью) ионита, сродством ионита и раствора и температурой. Подчеркнем, что среди прочих факторов температура также оказывает влияние на эффекты, вызывающие набухание, поэтому важно рассмотреть и учесть при моделировании тепловые процессы, возникающие при отмывке ионита. [c.375]

    Как уже было отмечено в разд. 2.7, в случае зависящего от ориентации потенциала квантовомеханический эффект обусловлен квантованием вращательной энергии. Поправка на диполь-дипольный член в потенциале была рассчитана Штокмайером [138]. Она может быть записана следующим образом  [c.235]

    Покажем, что пределы применимости этого уравнения можно расширить, а точность его повысить, если использовать последующие члены разложения выражения (1). В качестве примера рассмотрим потенциал (3),содержащий только один ориентационный вклад диполь-дипольного взаимодействия. В случае цилиндрически симметричных молекул этот вклад имеет следующий вид  [c.43]

    Таким образом, полученные данные показывают, что использовать эффективный сферически симметричный потенциал в теории возмущений для полярных жидкостей необходимо с осторожностью, предварительно анализируя пределы его справедливости. Например, в случае ацетона, потенциальная энергия для которого характеризуется следующими параметрами з = 4,600 А, //г = 560,2°К и [А = 2,90 D, приведенный дипольный момент имеет значение л = = 1. Следовательно, разложение (9) справедливо при значениях г от 1 до 3 для температур до 280°К (низшая температура) при значениях г > 1 температурный интервал расширяется вплоть до тройной точки ацетона (178 °К). [c.45]

    Двойной электрический слой может возникнуть также в результате адсорбции поверхностно-активных веществ. При специфической адсорбции полярные молекулы определенным образом ориентируются на поверхности металла и возникает адсорбционный двойной электрический слой и соответствующий скачок потенциала. В водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой в результате адсорбции дипольных молекул воды. [c.300]

    Вещество Теплота образования, кД ж/моль Потенциал ионизации, эВ Дипольный момент, В [c.60]

    Однако теплота адсорбции иона цезия Qi не остается постоянной, убывая по мере увеличения адсорбции. Этот эффект обусловлен тем, что дипольный слой отличается по своему строению от электрического двойного слоя с равномерно распределенными зарядами, поскольку в нем отдельные диполи расположены в дискретных точках [46, 247]. Электрический ДВОЙНОЙ слой с равномерно распределенными заряда(Ми не проявляет никаких электрических сил за пределами тех плоскостей, в которых располагаются его заряды, и обладает градиентом потенциала только в пространстве между этими плоскостями [c.132]

    Постоянство теплот растворения и теплот сорбции, наблюдаемое в тех случаях, когда атомы, по-видимому, проникают в поверхностные слои металла, еще не доказывает, что кинетическая энергия электронов в металле играет ту роль, которая отводится ей в теории Темкина. Нельзя, конечно, полностью исключить возможность того, что во всех случаях, включая растворение водорода в (3-титане, постоянство теплот сорбции обусловлено неподвижностью сорбированных атомов. Мы полагаем, что концепция, предлагаемая Темкиным, не дает решения рассматриваемого вопроса. В противном случае следовало бы сделать вывод, что изменения работы выхода и контактный потенциал возникают не за счет образующихся дипольных слоев, а за счет изменений в заполнении энергетических уровней поверхностного электронного газа. Принятие этой точки зрения привело бы к далеко идущим последствиям. При другом объяснении следует допустить, что изменения работы выхода и контактного потенциала частично, например наполовину, обусловлены изменением кинетической энергии электрона, как это было указано Темкиным, а частично — поверхностными диполями. [c.147]

    Те поверхностные примеси, которые образуют дипольный слой того же знака, что и слой, образованный самими адсорбированными атомами, уменьшают теплоту хемосорбции и вызывают увеличение энергии активации. Именно поэтому хемосорбция водорода на металлах, недостаточно восстановленных или загрязненных примесями, образующими отрицательные диполи, либо, наконец, частично окисленных, всегда протекает с энергией активации (разделы V, 9 и IX, 9). Одновременно теплоты хемосорбции будут иметь более низкие значения. Если бы никелевый порошок, применявшийся в опытах Эйкена, описанных в разделе IX, 1 (рис. 28, кривая 2), был загрязнен таким количеством ионов кислорода (вследствие недостаточного восстановления), которое вызвало бы появление эффекта поверхностного потенциала такой же величины, как и эффект, создаваемый адсорбцией са.мого водорода при О =0,3, то кривую 2 на рис. 28 следовало бы сместить вправо па расстояние и = 0,3. В результате этого она практически совпала бы с кривой 4, полученной Шуи и де Буром. [c.165]


    Химические реакции в поверхностных пленках. Надо полагать, что сам факт нахождения молекул в монослое на поверхности жидкости не изменяет ее химическою активность. Тем не менее экспериментальные данные показывают, что возможность химического взаимодействия молекул пленки с молекулами или ионами подкладки в значительной мере зависит от ориентации и плотности упаковки молекул пленки. Вследствие этого скорость реакции вещества пленки существенно зависит от ее структуры. Течение химических реакций в поверхностных пленках можно проследить, измеряя поверхностное давление или скачок потенциала. Первый из этих способов позволяет обнаружить всякое изменение, сопровождаемое заметной переориентацией молекул, второй—всякую реориентацию диполей или изменение полного дипольного момента молекулы. [c.58]

    Введение группы ЫОг с более высоким дипольным моментом (№ 4) приводит к увеличению -потенциала (которое с увеличением степени замещения от Л 1,63 до 6,72% возрастает до —55 мв). Введение групп основного характера (Яд 6 и 7) приводит к перемене знака -потенциала на положительный, в согласии с ранее приведенными данными в табл. 20. [c.156]

    На первый взгляд может показаться, что атом водорода, не имеющий собственного дипольного момента, не должен давать никакого вклада в скачок потенциала. Однако это не так, поскольку в неоднородном силовом поле у поверхности могут происходить сильная поляризация адсорбированных атомов и образование наведенных диполей, т. е. пространственное разделение зарядов и соответствующее возникновение скачка потенциала. Кроме того, величина X частично обусловлена вытеснением с поверхности диполей воды при адсорбции атомов водорода. [c.78]

    На первый взгляд может показаться, что атом водорода, не имеющий собственного дипольного момента, не должен давать никакого вклада в скачок потенциала. Однако это не так, поскольку в неоднородном силовом поле у поверхности может происходить сильная поляризация адсорбированных атомов и образование наведенных диполей, т. е. пространственное разделение зарядов и соответствующее возникновение скачка потенциала. [c.85]

    Непосредственно использовать для содержательного описания генератора целесообразно только мультипольные компоненты самых низких порядков. В частности, в векторной электрокардиографии уже давно находдт применение электрический мультиполь первого порядка — электрический дипольный момент сердца, который часто назьшают просто электрическим вектором сердца. Он имеет вполне четкую связь с описьшаемым электрическим процессом характеризует направление распространения, общую интенсивность и размеры волны возбуждения (деполяризации), а также интенсивность и ориентацию процесса восстановления (реполяризации) миокарда. Дать аналогичное истолкование электрическим мультиполям более высоких порядков значительно труднее. Для скалярного мультипольного разложения магнитного поля сложности возникают даже при интерпретации его первого члена — магнитного дипольного момента (его нередко назьшают просто магнитным вектором сердца) в связи с тем, что в обычном мультипольном разложении скалярного магнитного потенциала дипольный момент зависит не только от поля генератора, но и от кулоновских токов в проводнике. [c.267]

    Из уравнения (11.57) вытекает, что потенциал нулевого заряда зависит от природы металла и растворителя, от состава раствора и от электрода сравнения. Для выбранных металла и растворителя величина <4= может быть различной в зависимости от величии (т. е. от природы и концентрации поверхностно-активных ионов) и дип (т. е. от природы и концентрации поверхностно-активных дипольных молекул). Если же не только gt, =0, ио н и Ядим = Г- растворе нет никаких поверхностно- [c.252]

    Для описания межмолекулярного взаимодействля в расчетах методом Монте-Карло использовали потенциал Роулинсона [343]. В модели Роулинсона (Р УЬ) на атомах водорода воды располагаются положительные заряды, отрицательные заряды помещаются на линии, проходящей через атом кислорода перпендикулярно плоскости молекулы. Дипольный момент молекулы в этой модели равен 1,85 Д. Энергия связи димера воды 22,6 кДж/моль при равновесном расстоянии 0,269 нм. [c.122]

    Зависимость потенциальной энергии (потенциала) со-ударяюш ихся частиц от координат всех N частиц Е = = ( 1,. . ., дзм-в) с геометрической точки зрения есть уравнение гиперпространства потенциальной энергии в конфигурационном пространстве медленной подсистемы, и установление вида зависимости Е = Е(д ,. . ., qзN- ) означает нахождение формы этого гиперпространства. Для произвольной системы в обш ем случае эта задача не решается, и на практике используют различные виды модельных потенциальных функций [13, 24, 26, 281, аппроксимирующих реальный потенциал. В основном их можно разделить на две группы — потенциалы, зависящие только от расстояния между центрами взаимодействующих частиц (и, таким образом, не зависящие от угла), и потенциалы, зависящие от угловой ориентации. Некоторые сферически-симметричные потенциалы представлены на рис. 8. Существует целый ряд других моделей потенциалов [101 (сфероцилиндрические, точечные дипольные, модель Стокмайера и т. д.), которые в том или ином приближении описывают взаимодействие двух частиц с учетом особенностей их строения и которые так же, как и сферически-симметричные потенциалы (см. рис. 8), являются, в сущности, частными формами общего уравнения потенциального гиперпространства Е = Е(д). [c.67]

    Необходимо обратить внимание, что появление дипольного момента у молекул, возможность образования водородной связи или сильное взаимодействие молекул газа в адсорбированном слое при больших концентрациях изменяет адсорбционный потенциал и как следствие, коэффиицент разделения [2]. [c.51]

    ЧИН, которые входят в выражения, полученные на основании уравнения Шредингера, и которые трудно рассчитать теоретически с приемлемой точностью, достаточно легко определяются экспериментально. Примером таких величин являются поляризуемость, потенциал ионизации, дипольные моК1енты и т. д. Таким образом, даже грубое приближение к теории иногда оказывается весьма полезным тем, что позволяет установить связь между межмолекулярными силами и величинами, определяемыми экспериментально. [c.193]

    Пример 13 относится к дипопь-дипольной модели Кима (а — константа, зависящая от потенциала) пример 14 — к модели Хамипла (д — дипольный момент) 15 — к поляризационной модели Ланжевена—Стевенсона (а — поляризуемость молекулы). [c.218]

    Несколько лет назад Миньоле [38] установил, что металл также вызывает поляризацию молекул, адсорбированных на его поверхности. При измерениях контактных потенциалов им было обнаружено, что даже неполярные молекулы, адсорбированные на nOiBepxHO TH металлов чисто физическими силами адсорбции, обнаруживают довольно заметные дипольные моменты. Так, например, он нашел, что при адсорбции ксенона на поверхности никеля происходит изменение потенциала на 0,85 в. Предполагая, что в этом случае образуется сплошной адсорбционный слой ксенона, Миньоле сделал вывод, что каждый атом ксенона приобретает индуцированный дипольный момент ц, равный 0,42-Ю ЭЛ. ст. ед. (0,42 ед. Дебая). Эти диполи ориентируются таким образом, что их положительные концы направлены в противоположную сторону от адсорбирующей поверхности. [c.40]

    Разность (х — Хц) может быть оценена с помощью приближения Паулинга, согласно которому эта разность равна диполь-ному моменту связи, выраженному в дебаях (1 дебай = 10 эл. ст. ед.). Величина дипольного момента может быть найдена з изменения контактного потенциала, вызванного образованием адсорбированного слоя. Экспериментальные значения изменения контактного потенциала при адсорбции отзвестны главны.м образом для полных покрытий поверхности адсорбатом и, следовательно, для сплошных дипольных слоев на металле (т. е. для 0=1, где О обозначает степень заполнения). Для этих случаев [c.53]

    Приведенное значение энергии связи Ое заметно отличается от экспериментального значения )е(эксп) = 9,906 эВ. Учет энергии корреляции (см. гл. 4, 6) позволяет существенно улучшить теоретическую оценку Ве. При обсуждении качества базиса следует обращать внимание не только на энергию, но и на такие физико-химические величины, как дипольный и квадрупольный моменты, диамагнитная восприимчивость, электростатический потенциал на ядрах и градиент электростатического потенциала, константа экранирования и тд. Некоторые из перечисленных величин изменяются по мере улучшения энергетических характеристик монотонно, а другие - немонотонно, например дипольный момент. Некоторые расширенные базисы, вполне приемлемые для оценки энергии, воспроизводят дипольный момент с довольно большой погрешностью. Включение в базисный набор поляризующих функций оказьшается весьма существенным. Это обстоятельство следует иметь в виду при решении конкретных задач. Например, при вычислении энергии взаимодействия полярных молекул важно получить достаточно точное значение ДИП0ЛЫ10Г0 момента в заданном базисе, так как дипольный момент определяет существенную компоненту в энергии взаимодействия -индукционное слагаемое. Поляризующие функции важны и при вычислении величины <г >, через которую выражается диамагнитная восприимчивость  [c.242]

    Рассмотренная картина значительно усложняется, когда частицы способны избирательно адсорбировать ионы какого-нибудь определенного вида, иными словами, когда проявляется действие адсорбционного потенциала. Кроме того, на межфазной границе обычно существует скачок потенциала. А. Н. Фрумкин показал, что на межфазной границе аэрозолей воды или снега благодаря большому. .дипольному моменту молекул Н2О и их ориентации сушествует положительный электрический потенциал порядка 250 мВ Скачок потенциала на межфазной границе может возникать и вследствие так называемой баллоэлектрнзании — электризации частиц аэрозоля при получении его методом диспергирования. [c.346]

    Адсорбция кислорода является необратимым процессом. Поэтому термодинамическая теория может быть использована только для малой адсорбции кислорода. Несмотря на это, из кривой заряжения и на основе адсорбционного метода можно сделать некоторые качественные выводы о характере адсорбции кислорода на электроде. В самом деле, как видно из рис. 7, в области адсорбции кислорода на электроде заряд двойного слоя начинает падать с ростом Ег- Поскольку дЕ1дд)Ау >( , то этот результат указывает на появление диполей, обращенных отрицательным концом к раствору. Этот вывод следует также из расчета вклада атомов кислорода в скачок потенциала, который проводится совершенно аналогично расчету дЕ дАц) . Образование диполей платина — кислород с отрицательным зарядом на кислороде является следствием того, что кислород оттягивает на себя электроны платины. Величина дипольного момента связи Р1—О д больше, чем связи Р1—Н д . Так, суммарный вклад атомов водорода в скачок потенциала составляет десятые доли вольта, тогда как сум- [c.79]


Смотреть страницы где упоминается термин Потенциал дипольный: [c.7]    [c.406]    [c.584]    [c.192]    [c.309]    [c.227]    [c.241]    [c.252]    [c.184]    [c.27]    [c.53]    [c.166]    [c.130]    [c.89]    [c.155]   
Кинетика реакций в жидкой фазе (1973) -- [ c.48 ]

Биофизика Т.2 (1998) -- [ c.111 ]

Биофизика (1983) -- [ c.177 ]




ПОИСК







© 2024 chem21.info Реклама на сайте