Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция алкилирования по Фриделю Крафтсу

    Нафталин и другие конденсированные циклические соединения в реакциях алкилирования по Фриделю—Крафтсу обычно дают плохие выходы продуктов, поскольку, будучи высоко реакционно способными, они взаимодействуют с катализатором. Гетероциклические соединения обычно тоже малопригодны как субстраты для этой реакции. И хотя алкилирование некоторых фуранов и тиофенов удалось осуществить, нет сообщений об истинном алкилировании пиридина или хино-лина [209]. Алкилирование пиридина и других азотсодержащих [c.350]


    Как и сульфирование, реакция алкилирования по Фриделю — Крафтсу обратима. Обычные правила ориентации соблюдаются здесь поэтому только до тех пор, пока процесс протекает при кинетически контролируемых условиях (см. стр. 132), Следовательно, реакция должна быть вовремя прервана, что удается только в том случае, если скорость реакции можно поддерживать маленькой, т. е. если работают при мягких условиях (при низкой температуре и с малыми количествами катализатора) (см. общую методику). Напротив, при термодинамическом контроле, т. е. при более высоких температурах, продолжительном времени реакции, и больших количествах катализатора при алкилировании замещенных ароматических соединений часто получают преимущественно ле/па-замещенные. Кроме того, имеет место дезалкилирование и переалкилирование, особенно при применении сильнодействующих катализаторов. Если обрабатывают, например, п-ксилол хлористым алюминием, то наряду с о- и и -ксилолами. [c.302]

    Из вышеизложенного следует, что электрофилом в реакциях алкилирования по Фриделю — Крафтсу является карбокатион по крайней мере это справедливо для большинства случаев [219] и согласуется с тем, что карбокатионы перегруппировываются в следующем направлении первичные вторичные тре-тичные (см. т. 4, гл. 18). В каждом случае катион образуется [c.352]

    При этом образуются алкилированные арены Аг—К исторически сложившееся название этой реакции — алкилирование по Фриделю — Крафтсу.  [c.134]

    При действии на арены алкилгалогенидов в присутствии безводного хлорида алюминия образуются гомологи бензола (реакция алкилирования по Фриделю—Крафтсу), например  [c.263]

    Эффект мон<ет быть и весьма сильным. Например, реакции Фриделя — Крафтса с ароматическими соединениями, дезактивированными в большей степени, чем арилгалогениды, обычно вообще не протекают. Этим, кстати, объясняется, почему нитробензол можно использовать в качестве растворителя в реакциях алкилирования по Фриделю — Крафтсу, причем алкилирования самого нитробензола не происходит. [c.617]

    СХЕМА 7.3. РЕАКЦИИ АЛКИЛИРОВАНИЯ ПО ФРИДЕЛЮ — КРАФТСУ [c.234]

    Какие из приведенных ниже соединений способны вступать в реакцию алкилирования по Фриделю-Крафтсу Шифром ответа служит номер выбранного Вами соединения (соединений). Если Вы считаете, что веществ, способных к алкилированию, нет - шифр этого ответа 6. [c.87]

    На рис.2.9 приведена температурная зависимость изменения констант скорости убыли толуола, представленных в табл.2.17. Левая ветвь кривой (область температур выше 298 К) характерна для типичной реакции алкилирования арена мономером (Е = 26 кДж/моль). Излом при переходе в более низкотемпературную область (значение Е близко к нулю) указывает на преобладающую роль процесса полимеризации изобутилена. Диссоциация ионных пар при понижении температуры повышает активность ионов карбония как в отношении реакции роста цепи, так и в отношении ограничения ее при использовании толуола. При этом значение EдJ = -25,1 кДж/моль (энергия активации изменения степени полимеризации изобутилена) в присутствии толуола близко к Ед процесса, протекающего в отсутствие арена, т.е. в области отрицательных температур имеет место полимеризация изобутилена с ограничением цепи толуолом или своеобразная реакция алкилирования по Фриделю - Крафтсу. [c.103]


    Изучение нитрования, галогенирования и реакции алкилирования по Фриделю — Крафтсу толуола дает аналогичные результаты. Метильная группа делает кольцо более реакционноспособным, чем незамещенный бензол, и направляет атаку в орто- и /шра-положения кольца. [c.332]

    Ограничения для реакции алкилирования по Фриделю—Крафтсу [c.366]

    Реакции алкилирования по Фриделю — Крафтсу. В качестве еще более слабых электрофилов, чем хлорангидриды кислот, могут выступать галогеналкилы К-Г (Г = С1, Вг, I). Арены слабо взаимодействуют с алкилгалогенидами по типу универсальной сольватации, которая происходит за счет сил Ван-дер-Ваальса и дисперсионных сил. [c.225]

    В отличие от реакции алкилирования по Фриделю — Крафтсу, для которой достаточно присутствия небольшого количества хлористого алюминия, реакция ацилирования протекает с удовлетворительным результатом только в том случае, если количество хлористого алюминия будет значительно больше, чем при получений алкилбензолов. Причиной этого является образование комплексного соединения хлористого алюминия с кислородсодержащими реагентами, в частности с хлорангидридами, ангидридами кислот, кетонами и кислотами. [c.172]

    Согласно этому принципу, различные карбокатионы определяют течение очень многих реакций конденсации. Так, для введения алкильных заместителей применяют карбокатионы (см. стр. 136), образующиеся в результате анионоидного отрыва галоидных алкилов, спиртов или их производных под действием кислотных агентов можно применять также карбокатионы, возникающие при атаке тех же реагентов на олефины. Примером служит реакция алкилирования по Фриделю — Крафтсу г)  [c.219]

    Реакция алкилирования по Фриделю-Крафтсу является методом получения алкилбензолов - гомологов бензола. [c.422]

    В конце прошлого века было установлено [1—4], что гомологи бензола при нагревании с хлористым алюминием превращаются в сложную смесь алкилированных бензолов с различным числом алкильных групп в молекуле. Поскольку присутствие хлористого водорода облегчает подобные превращения, их связывали [3] с протеканием реакции обратной реакции алкилирования по Фриделю — Крафтсу, [c.5]

    В дальнейшем механизм электрофильного замещения будет рассмотрен на некоторых конкретных примерах в соответствующих главах, здесь же остановимся лишь на реакции алкилирования по Фриделю — Крафтсу, в общих чертах рассмотренную ранее. [c.121]

    В 1887 г. французский химик Шарль Фридель и работавший у него американский студент Джеймс Крафте открыли весьма важную для органической химии реакцию, которая в настоящее время называется реакцией алкилирования по Фриделю—Крафтсу. Используя в качестве катализатора небольшое количество галогени-да металла, они присоединили алкилгалогенид к ароматическому соединению. Впоследствии, изучая эту реакцию, химики обнаружили, что алкилирование происходит в том случае, если имеется ион карбония, который атакует ароматическое кольцо. Так, вместо алкилгалогенидов можно использовать спирты и алкены. Ниже приведены примеры реакции алкилирования по Фриделю-Крафт-су  [c.324]

    Важный случай применения реакции алкилирования по Фриделю— Крафтсу — это замыкание циклов [217]. Наиболее широкораспространенный метод состоит в нагревании с хлоридом алюминия ароматического соединения, содержащего в подходящем положении галоген, гидрокси- или олефиновую группу, как, например, при синтезе тетралина  [c.352]

    До сих пор не известны значения р и для других реакций, в которых переходное состояние столь мало отличается от промежуточного соединения, что разрыв С — Н-связи во всех случаях является стадией, определяющей. скорость реакции. Однако особенности строения промежуточного соединения в таких реакциях могут приводить к увеличению роли разрыва С — Н-связи и появлению изотопного эффекта. Так, реакции бромирования бромом и азосочетания, естественно, не имеют изотопных эффектов, однако вследствие энергетической близости промежуточного соединения с высокой энергией к дв ум переходным состояниям уже незначительного изменения в балансе двух скоростей реакций -1 и вызываемом структурными факторами, может быть достаточно, чтобы поднять второе переходное состояние выше первого и превратить разрыв С — Н-связи в стадию, которая будет определять скорость реакции. Таким структурным фактором могут быть стерические препятствия, которые, способствуя увеличению /е 1, облегчают переход промежуточного соединения через барьер первого переходного состояния. Стерические препятствия оказывают очень сильное воздействие, поскольку даже реакция бромирования смесью бром — перхлорат серебра (которая должна иметь значительно более низкие значения р, чем некаталитическая реакция) протекает с изотопным эффектом, в том случае когда субстратом является 1,3,5-три-/п/7т-бутилбензол [101]. Меркурирование и сульфирование следует рассматривать как примеры, в которых, несмотря на раннее переходное состояние, структурные особенности промежуточного соединения так влияют на изменение констант к-1 и к2, что появляется изотопный эффект. Значение р, полученное на основании самых последних данных по сульфированию бензола и толуола в 82,9%-ной серной кислоте (т. е. в условиях, в которых изотопный эффект не наблюдался), достигает, вероятно, величины порядка —8 [187]. Значение р для реакций меркурирования составляет только —4,0. Особенности строения промежуточного соединения увеличивают константу к-1 в одном случае и уменьшают константу 2 в другом, так что становится возможным появление изотопного эффекта. С другой стороны, при нитровании промежуточное соединение настолько сильно отличается по энергии от первого переходного состояния, что ни одна из структурных особенностей промежуточного соединения, которая способна приводить к появлению изотопного эффекта в других реакциях, не может в достаточной мере снизить энергию этого переходного состояния, и промежуточное соединение может переходить только в продукты реакции. Алкилирование по Фриделю — Крафтсу должно быть даже более экзотермичной реакцией, чем нитрование, и первичный изотопный эффект не наблюдался в изученных реакциях алкилирования. Но наличие изотопных эффектов постоянно отмечалось в реакции ацилирования, которая имеет заметно более высокое значение р, чем алкилирование. За исключением описанного выше бромирования сильно пространственно затрудненного 1,3,5-три-трет-бутилбензола [c.487]


    Характерной особенностью реакции алкилирования по Фриделю— Крафтсу является то, что углеводородные радикалы галоидных алкилов, олефинов и спиртов часто перегруппировываются во время этого процесса. Например, при взаимодействии бензола в присутствии хлористого алюминия с н-пропилбромидом или изопропилбромидом в обоих случаях получается кумол (Густавсон, 1878)  [c.163]

    Галоидирование. Реакция ароматических углеводородов с элементарным хлором и бромом с образованием продуктов замещения в кольце идет относительно медленно. Она сильно ускоряется металлгалоидными катализаторами их активность в этой реакции идет параллельно их эффективности в реакции алкилирования по Фриделю-Крафтсу [70]. Во многих случаях сообщалось, что катализаторами являются порошкообразное железо или алюминий. Однако вряд ли можно сомневаться, что при обычных условиях в присутствии свободных галоидов эти металлы превращаются в галоидные соли алюминия и железа, а эти последние и являются истинными катализаторами [221]. [c.445]

    Алкилирование ио Фриделю — Крафтсу отличается от основных реакций ароматического замещения тем, что входящая группа является активирующей, поэтому часто наблюдается ди- и полиалкилированпе. Однако активирующее действие простых алкильных групп (например, этильной, изопропильной) таково, что соединения, содержащие эти заместители, подвергаются атаке в реакциях алкилирования по Фриделю—Крафтсу только в 1,5—3,0 раза быстрее, чем бензол [204], поэтому часто оказывается возможным получить высокий выход моно-алкилированного продукта. В действительности тот факт, что часто в обсуждаемых реакциях получаются ди- и полиалкил-производные, объясняется не небольшой разницей в реакционной способности, а тем обстоятельством, что алкилбензолы предпочтительно растворяются в каталитическом слое, где и идет реакция [205]. Этот фактор можно устранить подбором подходящего растворителя, нагреванием или высокоскоростным перемешиванием. [c.350]

    Наиболее часто в реакции алкилирования по Фриделю — Крафтсу используют ароматические углеводороды, арилгалогениды, фенолы и ариловые простые эфиры. жета-Ориентирующие группы обычно препятствуют реакции вследствие стабилизирующего влияния, которое такие заместители оказывают на кольцо. Это влияние, однако, может быть подавлено, если с ароматической системой связаны активирующие группы, например алкоксильная. Нитробензол не алкилируется обычными методами, в то время как о-нитроанизол изопропилируется с хорошим выходом (84%)  [c.70]

    Этот важнейший метод синтеза арилкетонов называется ацилированием по Фриделю — Крафтсу [237]. Реакция находит широкое применение. В качестве реагентов используются не только ацилгалогениды, но также карбоновые кислоты, ангидриды и кетены. В случае сложных эфиров доминирует алкилирование (см. реакцию 11-13). Группа R может быть как арильной, так и алкильной. Эта реакция свободна от главного недостатка реакций алкилирования по Фриделю — Крафтсу, а именно группа R никогда не перегруппировывается, а поскольку группа R O дезактивирующая, то после введения одной такой группы реакция останавливается. Можно использовать ацилгалогениды, содержащие любой атом галогена, хотя наиболее часто применяются ацилхлориды. Обычно, но не всегда порядок реакционной способности соответствует следующему ряду I>Br> l>F [238]. Реакция катализируется кислотами Льюиса, аналогичными применяемым в реакции 11-13, но при ацилировании на 1 моль реагента требуется немного более [c.356]

    Это было доказано выделением алкилгалогенидов из реакционной смеси, а также тем, что Вг , h и 1 дают различные соотношения выходов орто- и лара-продуктов. Последний результат указывает на участие галогена в этой реакции [373], Кроме того, выделенные алкилгалогениды имели неперегруппирован-ную структуру (чего и следует ожидать, если они образуются по механизму Sn2) даже в тех случаях, когда алкильные группы, соединенные с ароматическим ядром, претерпевали перегруппировку. Как только алкилгалогенид образовался, он взаимодействует с субстратом по обычной реакции алкилирования по Фриделю—Крафтсу (реакция 11-13), что и объясняет перегруппировку алкильной группы, входящей в продукт. В случае вторичных и третичных R карбокатионы могут получаться непосредственно из субстрата, поэтому реакция не идет через алкилгалогениды [374]. [c.380]

    При хлорметилировании наблюдается большинство затруднений и характерных особенностей, присущих реакции алкилирования по Фриделю—Крафтсу. Так, здесь такое же влияние ориентантов, кроме того, обычно образуется некоторое количество полизамещенных продуктов в первом приведенном примере хлористый бензил получается с примесью п-дизамещенного продукта. Введение хлорметильной группы про- сходит, возможно, при более мягких словиях и более селективно, чем алкилирование по Фриделю—Крафтсу, и реакцию Блана с последующим восстановлением иногда применяют для синтеза разных ме-тилпроизводных по схеме  [c.327]

    К третьей группе относятся все кислоты Льюиса, как, например, галогениды бора, алюминия, цннка, сурьмы, ртути, меди, серебра, а также ион серебра. Они обладают особой способностью к стабн-лизацин анионов. Впрочем, эти соединения применяются обычно ие как растворители, а как катализаторы, особенно для SnI-реакций- (см. техническое получение алкилфторидов, разд. Г,2.5.о сингезы нзонитрилав, разд. Г,2.5.8 применение кислот Льюиса в реакции алкилирования по Фриделю — Крафтсу, разд. Г,5.1,6). [c.243]

    Ароматические соединения. Одной из характерных особенностей реакции алкилирования по Фриделю — Крафтсу является то обстоятельство, что при наличии алкильного заместителя в ароматическом ядре алкилирование заметно облегчается, при этом наблюдается общая тенденция к образованию значитсль)1Е>1х кол 5честв иолиалкильных производных. [c.10]

    Реакция. Алкилирование по Фриделю-Крафтсу ароматического соединения (8е относительно бензола) действием на него алкилгалогенида в присутствии нестехиометрического количества кислоты Льюиса (в данном случае А1С1з). Заметим, что при взаимодействии с н-алкилгало-генидами в присутствии хлорида алюминия часто образуются разветвленные алкилароматические соединения [6]. [c.170]

    Ароматические кольца с NHg-, NHR- или NRj-rpynnaMH не вступают в реакцию алкилирования по Фриделю — Крафтсу, в частности, потому, что сильно основной азот связывает кислоту Льюиса, необходимую для ионизации алкилгалогенида  [c.367]

    Реакция алкилирования по Фриделю — Крафтсу в ряду нафталина используется мало, вероятно, потому, что вследствие высокой реакционной способности нафталина происходят различные псбочные реакции и полиалки лирование. Алкилнафталины лучше всего получать ацилированием или циклизацией (разд. 35.14). [c.995]

    Обратимость реакций сульфирования и реакций алкилирования по Фриделю — Крафтсу подробно будет рассмотрена дальше. В этом разделе основное внимание будет уделено протодеметалли-рованию. Довольно детально изучено протодесилилирование [23а], а также реакции с участием германиевых, оловянных и свинцовых аналогов. Скорость расщепления соединений AгMEtз водно-мета-нольным раствором хлорной кислоты увеличивается в ряду М 81 < Се <С Зп <С РЬ. При использовании раствора хлористого дейтерия в тяжелой воде наблюдались первичные кинетические изотопные эффекты порядка = 1,55 -5- 3,05. Это подтверждает механизм с образованием а-комплекса (уравнение 27) [246]. [c.343]

    Реакция алкилирования по Фриделю—Крафтсу требует очень жестких условий и применения сильных кислот Лью- иса в качестве катализаторов. Только немногие функциональные группы инертны к таким катализаторам. Свободнорадикальное алкилирование ароматических соединений можно рассматривать как дополнительный, более мягкий метод синтеза [3]. Реакция дает смеси продуктов, получающиеся как за счет атаки по ядру и боковой цепи, так и за счет димеризации промежуточных ст-комплексов. Простые алкильные радикалы, вероятно, лучше всего генерировать фотолизом алкилмеркуриодидов [80]. Однако циклогексен- [c.53]

    Активность электрофильного агента повьшхается от молекулярного брома в уксусной кислоте к комплексу отреш-бугилбро-мида с трехбромистым гаплием в реакции алкилирования по Фриделю—Крафтсу. Селективность наиболее высока для электрофильных агентов, представленных в верхней части таблицы. К ним относятся молекулярный бром, хлор, ацилирующие агенты. Протонирование, нитрование, меркурирование, как правило, не отличаются высокой селективностью, а алкилирование по Фриделю-Крафтсу вообще мало селективно. При алкилировании толуола комплексом алкилгалогенида с бромистым галлием образуется 21-32% ле/яа-изомера, тогда как при бромировании и хлорировании в уксусной кислоте доля лета-изомера не превышает 0,3%, [c.426]

    Ретросинтетический анализ ароматических соединений целесообразно начинать с разъединения связи, примыкающей к ароматическому кольцу. В данном случае, однако, оказывается небез-различншл, какую из двух связей разъединить первой. Разъединение а лучше, чем так как дает н качестве второго синтона ацил-, а не алкилгалогенид (вспомним, что реакция алкилирования по Фриделю - Крафтсу идет недостаточно региоселективно, осложняется перегруппировками карбокатиона), кроме того, в данном случае речь идет об ацилировании активированного ароматического ядра  [c.154]

    Алкилирование ароматических углеводородов. Алкилирование является основной реакцией, которая протекает при взаимодействии олефиновых и ароматических углеводородов при температурах < 300° С на цеолитах с различной кислотностью. Классическая модель, разработанная для аналогичных гомогенных реакций алкилирования по Фриделю — Крафтсу [259], предполагает, что атакующим агентом является ион карбония или сильно поляризованный комплекс со смещенным атомом водорода. Электрофильная атака этого агента на ароматическую тг-электронную систему приводит к образованию бензениевого катиона, который, отщепляя протон, снова превраща- [c.77]

    Тенденция галогена в алкилгалогенидах к комплексообразованию с кислотами Льюиса обратно пропорциональна ионным объемам, поэтому устойчивость комплекса возрастает от ал-килиодида к алкилфториду. По этой же причине возрастает поляризация связи С—X от алкилиодида к алкилфториду, т. е. алкильный атом углерода обладает ббльшим положительным зарядом, который определяет его реакционную способность по отношению к нуклеофильному ароматическому соединению. Так, например, метилбромид в присутствии бромистого алюминия реагирует с бензолом примерно в 200 раз быстрее, чем иодистый метил. Поэтому для реакций алкилирования по Фриделю — Крафтсу алкилиодиды мало пригодны. [c.443]

    Аналогично другим реакциям алкилирования по Фриделю — Крафтсу хлорметилирование кетонов удается провести только в тех случаях, когда в кольце присутствуют активирующие заместители. Ацетомезитилен образует хлорметильное производное с удовлетворительным выходом  [c.80]


Смотреть страницы где упоминается термин Реакция алкилирования по Фриделю Крафтсу: [c.415]    [c.1051]    [c.233]    [c.342]    [c.170]    [c.468]    [c.449]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.605 , c.617 , c.642 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование по Фриделю-Крафтсу

Реакции алкилирования Алкилирование

Реакция алкилирования

Фридель

Фриделя Крафтса

Фриделя Крафтса реакция

Фриделя алкилирования



© 2025 chem21.info Реклама на сайте