Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки методы анализа

    Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определение молекулярной массы белков методами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения [c.44]


    Аналогичным образом можно измерить чистое использование белков (см. 2.1), которое во многом имеет то же значение, что и коэффициент чистого белка, тем более что содержание азота в скелете довольно мало меняется. Количество азота, удерживаемого в организме крысы, можно измерить по разнице между азотом, поступившим с кормом, и потерянным азотом (сумма азота мочи и фекалий) или путем химического анализа скелета. Наблюдается расхождение в результатах между этими двумя методами анализ скелета дает оценку удерживаемого азота приблизительно на 7 % ниже по сравнению с определяемым посредством балансов. Кроме того, при исследованиях с помощью анализов скелета ниже воспроизводимость результатов [46]. [c.572]

    Чтобы закончить с этой методической частью, следует добавить, что существуют и другие обычные, традиционные методы анализа множественных форм ферментов или белков и особенно всевозможные технические приемы хроматографии, иммунохимии или методы, основанные на биохимических свойствах ферментов (кинетика, сродство к субстрату, наличие кофакторов, стабильность при заданных pH или температуре). Однако очевидно, что благодаря весьма неплохой разрешающей способности, возможности одновременно анализировать много образцов (иногда в ничтожно малых количествах) и характеризовать молекулы с одинаковой активностью, электрофорез (и его основные разновидности — в градиенте акриламида и электрофокусирование) остается предпочтительным методом для изучения биохимического полиморфизма в том смысле, как он определяется. [c.41]

    Содержание этих элементов в различных белках колеблется незначительно. В белках постоянно находится азот, количество азота в них изменяется слабо. Поэтому содержание азота легло в основу определения количества белка в биологических жидкостях, тканях, органах. Для определения количества белка методом анализа устанавливают содержание в нем азота. Полученную величину умножают на 6,25, исходя из того, что в белках азот составляет в среднем 16% (100 16=6,25). [c.113]

    В настоящее время хроматография — один из наиболее распространенных методов анализа и выделения витаминов, антибиотиков, белков, гормонов, аминокислот и других природных соединений. [c.71]

    При помощи иммунохимических методов анализа каждую из этих двух фракций можно разделить на новые фракции. Так, ока залось, что к 7 5-глобулинам относятся уА- и у< ГЛобулины Эти фракции, в свою очередь, состоят из смеси белков, имеющих некоторые физико-химические различия. [c.125]

    Известно, что на биологическую активность белков влияет не только среда их функция существенным образом зависит от их строения. Обычно структурные особенности белков разделяют на несколько категорий. Первичная структура белка — ЭТО последовательность аминокислотных остатков в цепи, которая устанавливается с помощью химических методов анализа. Цепь может свертываться в спираль или принимать особую форму за счет образования водородных связей между амидными группами. Эта особенность структуры белка, являющаяся [c.300]


    Абсцисса каждого пика дает значение VI, характерное для данного компонента и позволяющее провести идентификацию площадь под пиком пропорциональна С1. Таким образом, электрофореграммы позволяют осуществить не только качественный, но и количественный анализ в сравнительно мягких условиях, поскольку в слабом электрическом поле, в отличие от условий других методов анализа (например, химических), не происходит денатурации белков. [c.215]

    Использование сложных оптических схем с разверткой позволяет получить на выходе э л е кт р о ф о р е г р а м м у — кривую с отдельными пиками. Абсцисса каждого пика дает значение характерное для данного компонента и позволяющее провести идентификацию площадь под пиком пропорциональна с,-. Таким образом, методом электрофореграмм можно вести не только качественный, но и количественный анализ в сравнительно мягких условиях, поскольку в слабом электрическом поле, в отличие от условий других методов анализа (например, химических), не происходит денатурации белков. [c.199]

    Изучение белков с помощью современных иммунохимических методов способствует выяснению особенностей их организации, механизма функционирования, гомологии с другими белками и т. д. Точность и чувствительность иммунохимических методов анализа, основанных на специфическом связывании антителами определяемого антигена, не имеют себе равных и широко используются в биологических исследованиях. Чувствительность определения составляет до г/л. При этом нет необходимости иметь очищенные препараты они могут быть смешаны и находиться в составе сложных многокомпонентных систем. [c.306]

    В главе Белки наряду с подробным изложением физико-химических свойств, методов анализа и разделения цитируются также новые работы по определению первичной структуры и конформации белков. После этого следует описание некоторых важных представителей белков, причем за основу классификации их выбрана биологическая функция. [c.7]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]

    Быстрое развитие ряда отраслей биологии началось всего лишь сто лет назад. Примерно тогда же было начато систематическое изучение белков, представляющее собой в известной мере более трудную задачу, чем, например, решение некоторых проблем физиологии или фармакологии. Основная трудность в изучении белка заключается в том, что объект исследования представляет собой очень большую и, по-видимому, чрезвычайно лабильную молекулу с исключительно сложной структурой. Поэтому разработка методов выделения и изучения нативных, неденатурированных белков происходила довольно медленно. Однако в последние два десятилетия, когда разработка методов анализа белков вступила в фазу быстрого и всестороннего развития, белковая химия сделала гигантский шаг вперед. Среди выдающихся достижений последних 10—15 лет видное место занимает расшифровка первичной структуры ряда белков. Вместе с тем и сейчас изучение структуры любого сколько-нибудь сложного белка является весьма серьезной задачей. [c.7]

    В последние годы благодаря развитию аналитических методов изучение нативных белков приобретает все возрастающее значение как в химических, биохимических и медицинских исследованиях, так и в клинической практике. В книге, целью которой является детальное описание методов анализа белка, было бы затруднительно давать подробный обзор результатов, полученных при использовании того или иного метода, и вполне естественно, что этого нельзя требовать от руководства, предназначенного для определенных практических задач. Мы решили, что будет наиболее целесообразным на тщательно подобранных примерах проиллюстрировать возможности и ограничения того или иного аналитического метода. [c.7]


    Хорошим примером изучения нативных белков является исследование белков сыворотки крови, включающее их выделение, очистку, количественный и качественный анализ. Широкое применение методов анализа белков будет показано нами именно на примере изучения сывороточных белков. [c.7]

    Тонкослойная хроматография. Тонкослойная хроматография — эффективный метод анализа сложных смесей веществ различных классов — углеводородов, спиртов, кислот, белков, углеводородов, стероидов II т. д. Она заключается в следующем. На одну сторону небольшой стеклянной пластинки с помощью специального валика наносят тонкий слой сорбента. На стартовую линию слоя сорбента наносят пробы веществ и их смесей край пластинкн ниже стартовой линии погружают в систему растворителей, налитую в широкий сосуд с пришлифованной крышкой. За счет капиллярных сил растворитель продвигается по пластинке. По мере продвижения жидкости по пластинке смесь веществ разделяется. Границу подъема жидкости, илп линию фронта, отмечают, пластинку сушат и проявляют. Отмечают, как указано па рнс. 77, положение пятен, соответствующих исследуемым веществам и находящихся между линией старта и линией фронта жидкости. Для этого измеряют расстояние от центра пятна до стартовой линии (отрезок а). Далее определяют расстояние от линии фронта жидкости до стартовой точки (отрезок Ь). Отношение отрезка а к отрезку Ь обозначают через константу / /, характеризующую положение вен1ества на данной хроматограмме. [c.70]

    В. АНАЛИЗ БЕЛКОВ МЕТОДАМИ ДИФФУЗИИ В ГЕЛЕ [c.127]

    Принцип метода. Анализ включает две стадии а) электрофорез исследуемого белка в геле агарозы и б) повторный электрофорез полученных фракций в геле, содержащем антитела, перпендикулярно к направлению первого разделения. Полоску геля, содержащего фракции исследуемого белка, полученные на первой стадии, помещают на пластинку геля агарозы, содержащего [c.154]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    Однако определить порядок аминокислот в полипептидной цепи молекулы природного белка удалось лишь полстолетия спустя, после того как был разработан еще один метод анализа. [c.129]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    В результате развития компьютерной технологии появились новые, эвристические подходы к решению проблем, для которых затруднено пртменение традиционных алгоритмических методов. Одним нз таких подходов является технология экспертных систем [10]. Впервые использование экспертных систем для объединения традиционных методов анализа первичных структур белков (предсказание их вторичной структуры, активных центров и т.п.) было предложе- [c.168]

    С помощью современных методов анализа аминокислот — хроматографии, ионоф ореза и метода противоточного распределения к 50-м годам XX века был окончательно установлен аминокислотный состав большого числа белков. Эти исследования еще раз подтвердили, что большинство белков состоит из 22 различных аминокислот и что разнообразие белков вызвано главным образом количественным соотношением аминокислотных остатков, характером связи, последовательностью в пептидной цепи или циклах и конформацией белковой молекулы Эти вопросы и являются самыми кардинальными в настоящее время. Первым из них, требовавшим разрешения, был вопрос о характере связи аминокислотных остатков в белке В конце прошлого столетия Гофмейстером было высказано предположение, что основной формой связи аминокислотных остатков и белков является амидная —СО— NH-. Это положение нашло свое подтверждение в блестящих работах Э. Фишера и его школы. Основными фактами, подтверждавшими это положение, были следующие  [c.486]

    ИТФ преимущественно применяют для разделения неорганических ионов и органических карбоновых кислот. Из-за проблем детектирования и трудностей, связанных с нахождением подходящих электролитов, для проб неизвестного состава метод ИТФ неприменим. В частности, подходящие носители, т.е. электролиты, необходимы для белков и других сложных смесей, причем для того, чтобы разделять зоны друг от друга, носители должны обладать скоростью, промежуточной между скоростями движения проб. Из-за необходимости поиска подходящих носителей в анализе белков метод ИТФ едва ли найдет широкое применение в биоаналитике. ИТФ, как вытеснительная хро-матография, способен концентрировать разбавленные пробы, поэтому он может быть использован на стадии предварительного концентри-рования перед разделением методом КЭ. Этим разрешаются проблемы, связанные с дозировкой относительно больших объемов разбавленных проб. [c.108]

    Антитела, обладающие способностью специфически соединяться с эпитопом антигена, — это белки, входящие в состав иммуноглобулинов. Все иммуноглобулины имеют одинаковую основную структуру (см., например, рис. 4.1 А)-, две тяжелые цепи (называемые Н от английского слова heavy), идентичные и связанные дисульфидными мостиками, и две легкие цепи (обозначаемые L от английского слова light), идентичные и связанные с тяжелыми цепями дисульфидными мостиками. У человека имеется пять классов иммуноглобулинов, которые различаются типом тяжелых цепей — а, л, 7, б и г. Легкие цепи каждого из этих классов иммуноглобулинов относятся к типу у. или X. Характеристики пяти групп иммуноглобулинов человека представлены на рисунке 4.1 Б. Иммуноглобулины G (IgG) являются наиболее распространенным типом, на долю которого приходится около /4 общего количества иммуноглобулинов в свою очередь их можно разделить на 4 подгруппы, различающиеся в основном числом дисульфидных мостиков, связывающих между собой тяжелые цепи. Именно эти иммуноглобулины наиболее часто используются при иммунохимических методах анализа. [c.91]

    Пессимизм в отношении возможностей органической химии решить задачу химического строения белков удалось развеять Э. Фишеру, самому авторитетному химику конца Х1Х-начала XX в. Он выдвинул эвристическую идею о полнпептидном строении белков, которая включала ряд постулатов, необходимых для формулировки принципов структурной организации молекул этого класса. После создания гипотетической модели Фишером составлена обширная программа ее опытной проверки. При ее реализации не было получено ни одного результата, который бы противоречил априори выдвинутому предположению о химическом типе белков. Все они свидетельствовали о том, что белковые молекулы представляют собой линейные полимеры, построенные из аминокислотных остатков, соединенных пептидными связями. Таким образом, можно было утверждать, что химический тип белков установлен и следует приступить к решению других вопросов первой фундаментальной задачи проблемы -разработке методов анализа и синтеза природных аминокислотных последовательностей. [c.62]

    Реальность расчета пространственного строения олигопептидов, казалось бы, легко может быть выяснена прямым сопоставлением теоретических результатов с опытными данными. Однако эта обычно столь простая процедура в данном случае чаще всего оказывается невыполнимой по ряду причин принципиального и препаративного характера. Кроме Того, из-за недостаточной чувствительности и некоторых других ограничений, присущих известным экспериментальным структурным методам, сопоставление теории и опыта во многих случаях не имеет того решаю- Цего значения, которое ему придается традиционно. Начнем с рассмот- ния возможностей рентгеноструктурного анализа олигопептидов. В изучении пространственного строения низкомолекулярных пептидов применимость этого метода более ограничена даже по сравнению с белками. Оли-ГОпептиды обладают повышенной конформационной лабильностью, и получение их в кристаллической форме является трудноразрешимой задачей. Но даже если удается вырастить пригодные для рентгенострук-I Horo анализа кристаллы и получить дифракционную картину, возника-ter серьезные осложнения с ее интерпретацией. Для расшифровки рентгенограммы нельзя, например, воспользоваться-методом изоморфного замещения, поскольку внедрение тяжелых атомов в образующие кристал-Яическую решетку олигопептидные молекулы искажает их строение, т.е. данном случае в отличие от белков метод не является действительно Изоморфным. В то же время олигопептиды слишком сложны для использо- [c.283]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    Все перечисленные выше твердые носители содержат свободные аминогруппы, за которые и прикрепляются пептиды или белки для анализа последовательности. Используются три основных метода связывания. В первом пептид обрабатывают Л -(3-диметиламино)-Л -этоксипропилкарбодиимидом в отсутствие нуклеофилов. Карбоксильные группы пептида сначала образуют 0-ацилизомоче-вины аналогичные производные, расположенные в боковых радикалах аспарагиновой и глутаминовой кислот, легко перегруппи- [c.268]

    Еще большее число белковых фракций (свыше 30) можно получить методом иммуноэлектрофореза (рис. 17.1). Этот метод представляет собой своеобразную комбинацию электрофоретического и иммунологического методов анализа белков. Иными словами, термин иммуноэлектрофорез подразумевает проведение электрофореза и реакции преципитации в одной среде, т.е. непосредственно на гелевом блоке. При данном методе с помощью серологической реакции преципитации достигается значительное повышение аналитической чувстительности электрофоретического метода. [c.569]

    После электрофоретического разделения белковые фракции можно фиксировать в поддерживающей среде и выявить с помощью специфического окрашивания. Среди многочисленных методов окрашивания особое значение в клинических исследованиях приобрели способы выявления связанных с белками липидных и углеводных компонентов. Благодаря простоте этих методов анализ липо-протеидов и гликопротеидов стал обычным в повседневной клинической практике. Он приобрел большое значение в диагностике некоторых заболеваний, а это позволило значительно продвинуться в выяснении их патогенеза. Специальные методы окрашивания помогают также обнаружить трансферрин, гаптоглобин, церуло-плазмин и другие компоненты сыворотки. [c.11]

    Проблема гомогенности белков в свое время решалась относительно просто с помощью традиционных методов анализа. Препарат считали гомогенным, если он не делился на фракции при электрофорезе или при ультрацентрифугировании. В настоящее время эти критерии гомогенности утратили свое значение. В нашем распоряжении появились более чувствительные методы исследования и стали обязательными более строгие показатели гомогенности. Ионообменная хроматография и электрофорез в геле являются сейчас наиболее чувствительными методами выявления так называемой микрогетерогенности белковых препаратов, какова бы ни была ее природа. Термин микрогетерогенность предложили Синг [82] в 1943 г. и Колвин с сотр. [6] в 1954 г. Из методов электрофореза в геле наиболее чувствительным для анализа микрогетерогенности белков оказался вертикальный диск-электрофорез. При использовании этого метода требуются весьма малые количества необходимого для исследования материала, с его помощью можно одновременно анализировать большое число образцов и к тому же он отличается высокой разрешающей способностью. Диск-электрофорезом можно обнаружить микрогетерогенность препарата даже в том случае, [c.31]


Библиография для Белки методы анализа: [c.116]   
Смотреть страницы где упоминается термин Белки методы анализа: [c.131]    [c.175]    [c.179]    [c.201]    [c.152]    [c.726]    [c.165]    [c.101]    [c.125]    [c.263]    [c.561]    [c.18]    [c.591]    [c.143]    [c.211]   
Белки Том 1 (1956) -- [ c.210 , c.212 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ, методы общие, определение белка

Белки деструкция, метод анализа

Белки, анализ методом пиролитической

Белки, анализ методом пиролитической газовой хроматографии

Определение концентрации общего белка в сыворотке (плазме) крови биуретовым методом (набор НТК Анализ-Х) (УИРС)

Определение структурной воды методом нейтронографического исследования белка. Анализ структуры комплекса карбоксимиоглобинвода. Б. Шенборн, Дж. Хансон

Ускоренный одноколоночный метод анализа белковых гидролизатов



© 2025 chem21.info Реклама на сайте