Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители химическим классам

    Существует несколько видов классификации растворителей по химическим классам, по физическим константам, например температуре кипения, вязкости, диэлектрической проницаемости и т. д., по кислотно-основным свойствам, по специфическому взаимодействию с растворенным веществом. Наиболее важными являются две последние классификации. [c.4]


    В табл. 50 приведены данные по набуханию вулканизованных тиоколовых герметиков в органических растворителях различных классов при 20 °С. Если проводить вулканизацию герметика при нагревании, например до 130—140 °С, то набухаемость в растворителях может быть немного понижена. Табл. 51 содержит результаты испытаний на химическую стойкость тиоколовых герметиков, вулканизованных при 20 °С и выдержанных до испытания 10 суток на воздухе. Они показывают, что резины из герметиков У-ЗОМ и УТ-31 могут применяться лишь при работе с разбавленными минеральными кислотами, а также водными растворами солей. По отношению к разбавленным растворам щелочи индифферентным оказался лишь герметик У-ЗОМ, который вообще характеризуется лучшей химической стойкостью по сравнению с герметиком УТ-31. [c.130]

    Прежде всего отметим широко распространенный принцип деления растворителей на протолитические и апротонные. В связи с тем что не выработан единый подход к трактовке и содержанию этих терминов, прокомментируем эту систему классификации. К протолитическим относятся растворители, проявляющие по отношению к растворенному веществу протонно-донорную либо протонно-акцепторную функцию. К апротонным относят растворители, которые не могут принимать участие в процессах переноса протона. Если отнесение растворителя к классу протолитических в больщинстве случаев может быть проведено априорно — на основании его химических свойств (так, к этому классу относятся спирты, карбоновые кислоты, фенолы и т. д.), то отнесение растворителя к классу апротонных может быть проведено лишь с учетом особенностей системы растворенное вещество — растворитель в целом. Так, бензол, который в системах с Ь-кислотами выступает как апротонный растворитель, будучи растворителем для очень сильных Н-кислот (например, жидкого фтористого водорода) либо для очень сильных оснований (например, жидкого аммиака), способен проявлять протонно-донорную либо протонно-акцепторную функцию  [c.40]

    Данные по экстракции жидкостей. До того как была разработана экстрактивная разгонка, разделение близкокипящих фракций, состоящих из компонентов различных химических классов, с успехом осуществлялось главным образом с помощью экстракции жидкости жидкостью. В литературе были опубликованы работы по изучению равновесия фаз ряда частично растворимых систем. Часто для экстрактивной разгонки могут применяться растворители, пригодные для экстракции жидкости жидкостью при условии, что они имеют упомянутую выше характеристику, в частности относительно высокие температуры кипения. Для облегчения выбора растворителя на основании такого рода сведений в табл. 8—9 воспроизведена сводка данных, собранных Смитом [28] для тройных экстракционных систем. Заметим, что в ней приведена тройная система анилин—н-гептан—метилциклогексан, из которой два последних компонента могут быть разделены экстракцией анилином [29]. Эта же система может быть разделена с помощью экстрактивной разгонки [12] в присутствии анилина как растворителя. [c.285]


    Довольно значительное распространение в качестве растворителей при электрохимическом получении химических продуктов получили амиды. Растворители этого класса очищают химическими методами в сочетании с перегонкой. [c.142]

    Наиболее типичным случаем дифференцирующего действия растворителей является взаимодействие растворенных веществ, принадлежащих к разным химическим группам, с растворителями разных классов, например, цри переходе от воды к ацетону, от спиртов к ацетонитрилу, от пиридина к метилэтилкетону и т. д. [c.173]

    Среди красителей также можно выделить химические классы, хотя правильнее классифицировать их по типам использующихся растворителей. Следует еще принимать во внимание, что в ассортименте торговых наименований изготовители не всегда разделяют пигменты и красители. Ассортимент может называться, например, Х-красители для Y-пластмасс , а содержать только пигменты. И только таблица растворимости показывает, что ассортимент красителей понимается в смысле DIN 55943. Ассортименты с определенными показателями растворимости содержат различные по химической природе красящие вещества. [c.124]

    Схема Снайдера предназначена в основном для классификации селективности растворителей. Из табл. 2.8 мы видели, что химически родственные растворители имеют близкие параметры селективности. Для такого рода классификации вполне достаточно было бы иметь данные только о структуре. Однако в этом отношении схема Снайдера делает шаг вперед соединения различных химических классов объединяются в одну группу по селективности. Уравнения (2.14) — (2.17) показывают, что три параметра селективности связаны между собой следующим соотношением  [c.47]

    Следовательно, идентификация красителей на волокне, окрашенном в составной цвет, представляет собой задачу, несколько отличающуюся от задач, стоящих перед исследователем при анализе красителей как таковых. Смесь красителей, принадлежащих к разным химическим классам, удается сравнительно легко проанализировать с помощью специфических реактивов. Папример, наличие в смеси двух кислотных красителей — одного азокрасителя, другого — антрахинонового, можно установить по разному отношению к восстановлению и последующему окислению. Если удается полностью или частично десорбировать красители с волокна обработкой водой, слабой щелочью, разбавленной уксусной кислотой или органическими растворителями, то полученный раствор можно исследовать по описанным выше методам. Для выделения кубовых красителей, нанесенных на целлюлозу, окрашенное волокно растворяют в концентрированной серной кислоте и осаждают кубовый краситель, разбавляя этот раствор водой. При этом если ткань была окрашена несколькими красителями, их можно разделить фракционным осаждением. Если крашение было проведено смесью красителей разных типов, их можно разделить экстрагированием подходящим растворителем. Например, индиго можно экстрагировать из выкраски смесью фенола и сольвент-нафта и таким путем выделить его из смеси с кислотным нли хромирующимся красителем. [c.1525]

    Однако для систем, не являющихся идеальными при повышенных температуре и давлении, а также для систем, состоящих из компонентов, существенно различающихся по своим физико-химическим свойствам, нанример углеводороды одного и того же гомологического ряда, но сильно различающиеся по температурам кипения (метан и гептан) или компоненты, относящиеся к различным классам соединений, например углеводороды и селективный растворитель (фенол, фурфурол и др.), константа фазового равновесия, вычисленная таким методом, не характеризует действительного распределения компонентов между жидкой и паровой фазами. [c.61]

    Экстракция в системах жидкость—жидкость применяется для разделения смесей, трудно разделимых или вовсе не разделимых путем дистилляции вследствие небольшой разности давлений их паров, способности образовывать азео-тропные смеси, нелетучести или недостаточной термической стойкости. Экстракция пригодна, в частности, для разделения веществ различных химических классов, тогда как дистилляция по своему принципу более пригодна для разделения соединений, молекулы которых имеют различные размеры. Однако наиболее современные способы азеотропной и особенно экстрактивной дистилляции часто конкурируют как разделительные процессы с экстракцией. Окончательный выбор процесса должен определяться наименьшей затратой энергии (тепла) это справедливо и для процессов экстракции, где требуется затрачивать тепло на выпаривание или ректификацию для удаления добавленного растворителя. [c.11]

    Два компонента, относящиеся к разным химическим классам, можно обычно легко разделить при помощи газо-н<идкостной хроматографии, так как удается выбрать растворитель, для которого величина Зg ( У1з /У2з ) велика даже в том случае, если член lg (рх/р ) мал. Таким образом, например, можно легко анализировать смесь бензола ( кип 80,1°) и цик ю ексана ( кип = 80,7°). [c.73]


    В действительности это не так, и для разных химических классов оснований одного и того же типа зарядности приходится вводить разные функции Н , На, Нц, Нж и т. д. для электронейтральных оснований). Однако, не во всех случаях метод функций кислотности применяется достаточно строго. Кроме того в концентрированных растворах сильных кислот экспериментально наблюдаемые величины могут характеризовать не бренстедовское кислотно-основное равновесие, а какой-либо другой процесс. Поэтому величины рКа, определенные с использованием этого метода, следует рассматривать как приближенные оценки значений для стандартного растворителя. Учитывая это обстоятельство, значения рКа, определенные методом функций кислотности, снабжены соответствующим примечанием в графе 8, в которой указана использованная функция кислотности и компоненты среды (кроме стандартного растворителя), в которой определена данная функция и выполнено измерение табулируемого значения рКа- Часть величин рКа, определенных методом функции кислотности, объединены в особые таблицы (1/120 и 1/121). [c.7]

    Нередко основной продукт содержит несколько примесей, сильно различающихся по своей химической природе и растворимости. В таких случаям трудно подобрать растворитель, обеспечивающий эффективную очистку сразу от всех загрязнений. Успеха добиться можно последовательной перекристаллизацией из двух или даже трех растворителей, выбранных из разных классов химических соединений. [c.112]

    Углеводороды различных классов, различной химической природы могут быть разделены применением селективных растворителей, принцип действия которых был рассмотрен выше. [c.177]

    Согласно классификации природных ископаемых с углеводородной основой, предложенной Абрахамом [213], к нефтям относят те, что содержат до 35-40 % масс. САБ, а природные асфальты и битумы содержат до 60-75 % масс. САВ, по другим данным - до 42-81 % [141]. В отличие от более легких компонентов нефти, признаком отнесения которых к своим группам было сходство их химического строения, критерием объединения соединений в класс под названием САВ служит их близость по растворимости в конкретном растворителе. При действии на нефть больших количеств петролейного эфира, низкокипящих алканов происходит осаждение веществ, называемых асфальте-нами, которые растворимы в низших аренах, и сольватирование других компонентов - мальтенов, состоящих из углеводородной части и смол. [c.26]

    Неводные растворители могут быть использованы прежде всего для получения безводных соединений, особенно таких, которые при обезвоживании склонны вступать в реакции гидролиза или разложения. Особым классом неводных сред, в которых можно проводить химические реакции, являются расплавы солей. [c.556]

    Принятое в пособии расположение материала должно способствовать более глубокому усвоению систематического курса органической химии, как правило, основанного на последовательном рассмотрении различных классов органических соединений, а также формированию у студента научного подхода к прогнозированию оптимальных условий проведения химических процессов (выбор того или иного растворителя, катализатора, температурного режима). [c.3]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    Под термином тин хроматографической системы понимают сочетание сорбента того или иного химического класса, подвижной фазы па осповапии водных или органических растворителей, характеризующейся интервалом pH, наличием снецифических добавок кислого, основного или новерхностно-активного характера и т.д. Выбор тина системы основывается, в первую очередь, по оценке полярности и кислотно-основных свойств комиоиеитов изучаемой системы. Условная оценка нолярности анализируемых веществ, нонимаемой в данном случае как относительное количество полярных и неполярных структурных фраг- [c.34]

    Под термином тип хроматографической системы понимают сочетание определенных признаков качественного состава сорбента того или иного химического класса, подвижной фазы на основе водных или органических растворителей характеризующейся интервалом pH, наличием специфических добавок кислого, основного или поверхностно-активного характера и т. д. Выбор типа системы основывается в первую очередь на оценке полярности и кислотноосновных свойств компонентов изучаемой смеси. Условная оценка полярности анализируемых веществ, понимаемой в данном случае как относительное количество полярных и неполярных структурных фрагментов, представленных в их молекулах, может быть осноЕана на шкале упрощенного критерия гидрофобности Н. Этот критерий рассчитывается по формуле  [c.303]

    Очевидно, речь должна идти о воздействии физического фактора, тесно связанного с химическим строением. В литературе делались попытки сопоставления влияния растворителей на спектры флуоресценции и поглощения с дипольным моментом [л, диэлектрической постоянной е или показателем преломления п, однако без особого успеха. Для иллюстрации отсутствия связи между изменением у фл и л, е и п растворителей такое сопоставление в отношении исследованных нами веществ выполнено на рис. 2. Неудача попыток сопоставить действие растворителей на спектры с [а, е и п объяснялась одновременным действием всех этих факторов. Не отрицая возможного влияния этих факторов, следует отметить, что сопоставление изменений спектров флуоресценции с этими характеристиками растворителей нельзя считать вполне оправданным, (л, и п являются макроскопическими характеристиками сред и не отражают тех микроусловий, в которых находится молекула растворенного вещества. На молекулу растворенного вещества может оказывать преимущественное действие именно микроструктура растворителя. Микросвойством, неразрывно связанным с присутствием определенных группировок атомов, характеризующих данный химический класс, являются заряды на отдельных атомах молекул. Надо думать, что на электронное облако молекулы растворенного вещества будут оказывать влияние в основном заряды, сконцентрированные на отдельных атомах молекулы растворителя, которые могут приближаться вплотную к противоположно заряженным атомам молекулы растворенного вещества. К сожалению, данных о величине зарядов на отдельных атомах молекул почти нет, так что провести количественное сопоставление [c.263]

    Нитрилы. Из растворителей этого класса наибольшее применение находит ацетонитрил. Предложено большое число методов очистки этого растворителя от примесей, основанных главным образом на различных сочетаниях химической обработки с перегонкой. Один из методов предусматривает обработку технического ацетонитрила гидридом кальция (10 г/л) с последующими декантацией и фракционной перегонкой в присутствии Р2О5 (5 г/л). Затем дистиллят снова обрабатывается гидридом кальция при нагревании в течение нескольких часов с обратным холодильником. Очистка заканчивается фракционной перегонкой. [c.143]

    В системах с изоамиловым спиртом можно хроматографировать водорастворимые красители всех химических классов. Процесс в этой системе сходен с распределительной хроматографией и выявляет различия коэффициентов распределения и растворимости красителей. Однако скорость движения растворителя по бумаге, которая обычно в случае распределительной хроматографии влияет на воспроизводимость результатов, в данном случае не оказывает какого-либо действия. Это было показано, когда данный растворитель применяли для хроматографии в центробежном поле, где скорость движения системы растворителей по бумаге возрастает во много раз. В табл. 3.2 для отдельных групп водорастворимых красителей показаны интервалы изменений значений Rf, определенные по данным для нескольких сотен красителей с известным химическим строением. Значения Rf относятся к системе с изоамиловым спиртом на бумаге ватмап № 1. [c.75]

    Краситель, предназначенный для анализа, может находиться в его первоначальной упаковке, снабженной этикеткой, на которой указано фирменное название красителя. С помощью olour Index часто можно установить тип красителя, основный или дис-персный, пигмент и т. д., а иногда и его химический класс, например азокраситель, антрахиноиовый. Если фирменное название не известно, важно найти волокно, для крашения которого используется краситель, например шерсть, акриловое или полиэфирное волокно. В случае, когда ни фирменное название, ни область применения красителя не известны, существует возможность определения его анионного, катионного или неионного характера с помощью методов электрофореза, крашения различных волокон или путем исследования растворимости красителя. Затем при возможности краситель хроматографируют на бумаге, тонком слое силикагеля или полиамида с помощью подходящих растворителей и определяют степень его чистоты. Если краситель является смесевым, его разделяют на составляющие до анализа. [c.351]

    Два первых предварительных испытания состоят 1) в обычной пробе на десорбцию и 2) в определении отношения образца к Фор-мозулю G и к последующему действию воздуха или 3%-ного раствора перекиси водорода. Опыты по десорбции могут дать непосредственное представление о принадлежности данного красителя к определенному классу по красящим свойствам. Например, если окрашенная шерсть пачкает белое хлопчатобумажное волокно при совместном их кипячении в 5%-ном растворе соды в течение минуты, это свидетельствует о присутствии прямого красителя для хлопка. Этилендиамин является хорошим реагентом для многих красителей, так как продажный этилендиамин представляет собой эффективный растворитель для красителей и обладает сильными основными и восстанавливающими свойствами. При нагревании с этим растворителем до 50—60° или даже при комнатной температуре индигоидные красители превращаются в лейкосоединения. Большинство антрахиноновых красителей незначительно восстанавливается этилендиамином на волокне, но они растворяются в кипящем растворителе как таковые или в виде лейкопроизводных. Принадлежность красителя к определенному колористическому или химическому классу, а иногда и состав индивидуального красителя могут быть при этом определены по окраскам раствора и волокна и по отношению обеих окрасок к последующему действию окислителя. Все окраски и печать кубовыми красителями образуют растворы лейкосоединений при обработке этилендиамином, содержащим немного глюкозы и несколько капель 22%-ного раствора едкого натра. н-Бутиламин в сочетании с гидросульфитом также хорошо растворяет кубовые красители и десорбирует их с волокна. Некоторые неолановые краси- [c.1526]

    Дальнейшее деление может быть проведено на основе других характерных свойств соединений. Так, в классе углеводородов можно произвести деление на соединения насыщенные и ненасыщенные, эфиры можно разделить по характеру цепей, прямых или разветвленных, амины—по числу радикалов. Физико-химические свойства растворителей (температура кипения, давление пара, теплота испарения, критические температура и давление, вязкость, плотность, поверхностное натяжение, рефракция, криоскопическая и эбулио-скопическая постоянные) в виде обобщенных формул или отдельных данных указаны в руководстве Вейсбергера Органические растворители [117]. [c.18]

    Метод диссоциативной экстракции может успешно применяться для разделения целого класса органических соединений, сходных по своим физико-химическим свойствам и поэтому трудно разделимых обычными методами [1—3]. Диссоциативная экстракция может быть отнесена к экстракционным системам типа неэлектролит—электролит, но в отличие от других систем подобного класса экстрагент должен быть в стехиометрическом дефиците по отношению к общему содержанию компонентов, поскольку именно при таком условии в наибольшей степени будут проявляться его селективные свойства. При этом химическая реакция для конкурирующих реагентов является определяюпщм фактором процесса диссоциативной экстракции. Она создает основу для полного разделения смесей, которого нельзя достигнуть такими традиционными методами, как фракционная дистилляция, экстракция органическими или водными растворителями, кристаллизация и т. п. [c.79]

    Нейтральные смолы не содержат химически активных групп, хотя имеются указания на небольшое содержание активного водорода, открываемого по методу Церевитинова-Чугаева. Нейтральные смолы легко подвергаются действию крепких кислот, света и повышенной температуры, переходя при этом частично в асфальтены. Неоднородность нейтральных смол видна не только из элементарного состава фракций, выделенных разными растворителями, но и из того факта, что при недостатке силикагеля в качестве поглотителя адсорбируются только наиболее твердые смолы с повышенным содержанием кислорода. Вторая адсорбция дает уже совсем не такие смолистые вещества. Отсюда следует, что при анализе необходим избыток силикагеля. При таких условиях едва ли следует переоценивать эмпирические формулы не только для суммарных смол, но даже и для фракций. Все это чрезвычайно затрудняет химическую интерпретацию веществ этого класса. [c.147]

    Способность вещества к обугливанию ( карбонизации, образованию углистого остатка ) под действием химических реагентов, высоких температур и активных твёрдых поверхностей яв1иется качественным признаком его принадлежности к классу органических соединений. Она лежит в основе процессов промышленного производства углеродных материалов и является причиной усложнения условий проведения, технологических схем, аппаратурного оформления, механизации и автоматизации многих процессов химической переработки и сжигания горючих ископаемых, биомассы и их дериватов вследствие образования обогащённых углеродом побочных продуктов, загрязняющих целевые продукты, аппаратуру, катализаторы, реагенты, растворители и окружающую среду. Поэтому карбонизация органических веществ и материалов является объектом многолетних, постоянно расширяющихся и углубляющихся исследований, проводимых как в аспекте создания, производства и применения углеродных материалов, так и с точки зрения у.ченьшения или устранения отрицательных последствий её протекания в процессах переработки и применения органических веществ и материалов. [c.5]

    В учебнике планомерно проводится мысль, что органическая реакция — это взаимодействие электрофила и нуклеофила с участием катализатора и растворителя. Поэтому первостепенной задачей при рассмотрении механизма реакции является выявление реакционных центров и направления перемещения электронной плотности в реагентах, Для более полного решения этой задачи характеристике классов предшесгвует краткое рассмотрение таких вопросов, как природа химической связи, классификация реагентов и реакций, теория электронных смещений, общие закономерности органической реакции. [c.5]

    Из вышеприведенного перечня высокомолекулярных соединений можно видеть, что соединения этого класса обладают самыми различными свойствами. Так, натуральные и синтетические каучуки высокоэластичны (обратимо растягиваются на сотни процентов), а большинство синтетических смол жестки, как стекло. Некоторые высокомолекулярные соединения растворяются в различных растворителях и дают ценнейшие для промышленности растворы в виде лаков, клеев и пленкообразо-вателей, другие же не растворяются ни в чем. Одни обладают кислотостойкостью или диэлектрическими свойствами, у других этого нет и т. д. В настоящее время установлено, что свойства высокомолекулярных веществ зависят от условий их получения, температуры испытания, химического строения, размеров и формы молекул, агрегатного состояния, интенсивности меж-молекулярных связей и других факторов [c.166]


Смотреть страницы где упоминается термин Растворители химическим классам: [c.11]    [c.11]    [c.187]    [c.202]    [c.350]    [c.320]    [c.445]    [c.438]    [c.36]    [c.68]    [c.11]    [c.518]    [c.73]    [c.84]   
Растворители в органической химии (1973) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте