Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осушка газов простая

    Рассмотрим на примере фрагмент наиболее простой методики расчета процесса осушки газа. [c.145]

    Едкое кали и едкий натр. Эти вещества используют для осушки газов в тех случаях, когда необходимо избавиться от примесей кислого характера, например от хлористого водорода, сернистого газа. Едкие щелочи пригодны для предварительной сушки органических соединений основного характера, в частности аминов, а также простых эфиров. При сушке простых эфиров они одновременно удаляют пероксиды. Едкое кали относится к сильным осушителям, а едкий натр обладает средней осушающей способностью. [c.174]


    На рис. 116 представлена схема простейшей холодильной установки с турбодетандером, в котором газ расширяется с 15 до 5,6 кгс/см , благодаря чему получается холод, необходимый для конденсации углеводородов. Основная сепарация сконденсировавшихся углеводородов происходит в сепараторе 5 при —101,1° С. Для предупреждения гидратообразования применяется двухступенчатая осушка газа до точки росы (—18° С) — гликолевая и для окончательного обезвоживания газа — адсорбционная с помощью молекулярных сит. [c.195]

    Для глубокой осушки газа и жидких углеводородных фракций применяют также адсорбционные процессы. В качестве адсорбентов используют силикагель, оксид алюминия и цеолиты. Эти процессы просты в аппаратурном оформлении и экономичны при не слишком больших потоках газа. Часто процесс оформляют в две ступени на первой газ осушают абсорбентами, а на второй - адсорбентами до точки росы (минус 50°С и ниже). [c.87]

    Для процесса адсорбционной осушки газов характерны простая схема и невысокие эксплуатационные затраты при малом расходе адсорбента и тепла на отпаривание влаги. Недостатком ее я вляется периодичность процесса. [c.67]

    В своей простейшей форме установка адсорбционной осушки газов состоит из двух аппаратов, заполненных зернами твердого осушителя и снабженных соответствующим вспомогательным оборудованием, позволяющим проводить регенерацию слоя адсорбента в одном аппарате, в то время как [c.274]

    Существуют два способа извлечения из газа целевого компонента адсорбционный с использованием в качестве поглотителей цеолитов и абсорбционный с применением жидких поглотителей — абсорбентов. Первый способ является периодическим, поскольку он требует периодической смены твердого поглотителя, для чего нужно часто переключать потоки газа и соответственно разогревать и охлаждать оборудование. Второй способ — непрерывный, имеет меньшие эксплуатационные затраты и стоимость оборудования, повышает надежность работы, прост в управлении и контроле. Поэтому на промыслах используется абсорбционный способ осушки газа и извлечения тяжелых углеводородов. [c.32]

    Очистка гликолями (ДЭГ, ТЭГ) применяется обычно на промыслах в тех случаях, когда газ содержит большое количество H S и СО и нет необходимости в его очистке от этих примесей до требований отраслевого стандарта (ОСТ 51.40—83), а используют его для нужд самого промысла (закачка в пласт для поддержания пластового давления, использование в качестве топливного газа). Применение гликолей упрощает технологию очистки, поскольку для очистки и осушки газа от паров воды используется один абсорбент. Кроме того, основное количество абсорбированных компонентов выделяется из насыщенного абсорбента простой дегазацией, без затрат тепла. Наибольшее распространение в таких процессах очистки получил ДЭГ, растворяющая способность которого по сероводороду и диоксиду углерода характеризуется зависимостями, показанными на рис. 1.24. Видно, что при атмосферном давлении растворимости H S и СО близки и очень низки (3—8 мг/м ), а с повышением давления они резко растут — до 80—100 мг/м по H S (при 1,2 МПа) и 10—15 мг/м по Oj (при 2,0 МПа). Это свидетельствует о том, что степени очистки сырого газа от H S и СО гликолями будут существенно различаться. [c.147]


    Наиболее простой является схема IV. 13 схема IV. 14 более сложна, так как предусматривает отделение углеводородов Сз и ниже на специальной колонне (что, однако, создает более надежные условия для процесса осушки газа). [c.113]

    Технологическая схема производства водорода и кислорода электролизом воды сравнительно проста. Кроме основной стадии разложения воды она включает несколько вспомогательных стадий, необходимых для обеспечения питания электролизеров постоянным током, для очистки питающей воды и приготовления электролита. При повышенных требованиях к чистоте газов электролиза схема дополняется стадиями очистки водорода и кислорода от щелочного тумана и взаимных примесей и осушки газов для удаления паров воды, унесенных из электролизеров и образовавшихся при каталитической очистке. Ниже описаны два наиболее характерных варианта технологической схемы электролиза воды примерная промышленная схема производства большой мощности с использованием крупных фильтрпрессных электролизеров ФВ-500 (на 500—650 м ]ч водорода), работающих при небольшом избыточном давлении, и схема средних и малых установок электролиза воды, обычно работающих под давлением 10 ат и, как правило, снабженных оборудованием для каталитической очистки и осушки газов. Однако первый вариант схемы не исключает возможности каталитической очистки и осушки газов. И наоборот, во втором варианте схемы эти стадии могут отсутствовать, если в них нет необходимости. [c.191]

    Изучение нроцесса осушки газа при наличии в нем непредельных углеводородов, в том числе бутиленов и дивинила, а в некоторых случаях амиленов и циклопентадиена, потребовало разработки надежного и по возможности простого и быстрого метода определения влаги в пирогазе до и после осушки. С этой целью были испытаны и доработаны применительно к пирогазу методы определения влагосодержания газов при помощи фосфорного ангидрида, хлористого кальция, карбида кальция [2], нитрида магния, индикаторов влажности [3] и по точке росы. [c.259]

    Охлаждение газа является одним из самых простых и дешевых способов его осушки. Осушка газа при охлаждении основана иа том, что при каждой данной температуре в газе содержится определенное количество водяных паров. Чем ниже температура газа, тем меньше в нем водяных паров. [c.280]

    Применение ванадиевых катализаторов в производстве серной кислоты из сероводорода позволяет отказаться от мокрой очистки и осушки газа и заменить абсорбцию более простым процессом конденсации. [c.180]

    Оборудование для осушки газа адсорбционным методом (рис. 22, б) простое, а эффект осушки зависит от свежести адсорбента и количества влаги в газе. [c.63]

    Наиболее простым, эффективным и экономичным способом осушки газов является адсорбционный метод, получивший в последние годы широкое распространение в промышленности. При сопоставлении осушительной способности различных адсорбентов было показано [29], что силикагель как адсорбент обладает недостаточной прочностью, активная АЬОз значительно более прочна и меньше измельчается. Был подобран новый эффективный адсорбент типа активной АЬОз — активный глинозем, получающийся из кускового А1(0Н)з. Активный глинозем является наиболее дешевым из применяемых в настоящее время в промышленности адсорбентов. [c.70]

    Такая модификация динамического конденсатора более проста по конструкции и дешевле в изготовлении. Ее рационально использовать при конденсации пара или паровоздушной смеси. Первую модификацию динамического конденсатора с сепарационной камерой целесообразно применять при осушке газов и воздуха с механическими примесями. [c.133]

    Недостаток применения оксида алюминия н силикагеля для осушки газов, содержащих непредельные углеводороды, заключается в полимеризации этих углеводородов на поверхности адсорбента. В последние годы для глубокой осушки газов используют цеолиты — Са-, N3- или К-содержащие кристаллические алюмосиликаты с размером пор от 0,4 до 1 нм. Цеолиты имеют высокую влагоемкость (10% н более) даже при 100°С, когда другие адсорбенты теряют функцию осушителя. При осушке газов цеолитами остаточное содержание влаги в газе достигает 0,001%, а его точка росы от —75 до —100 °С. Установки с твердыми адсорбентами просты в эксплуатации и позволяют достичь высокой степени осушки газа, но они требуют расхода большого количества тепла возможно также отравление и разрушение адсорбента. [c.57]

    При использовании в качестве сырья сухих газов возникает вопрос о выборе варианта разделения сухого газа — отдельно от газов пиролиза или совместно с последними. Преимуществом второго варианта является более простая схема. По первому варианту расход энергии будет несколько меньше однако при этом потребуются две линии для очистки и осушки газа, значительно увеличится количество аппаратуры, а также потребуется боль- [c.170]


    Наиболее простым в отношении аппаратурного оформления способом осушки газа является впрыск гликолей в трубопровод газового потока. Смысл данного способа заключается в том, что [c.225]

    Таким образом, довольно простой расчет показывает, что в борьбе с гидратами осушка газа методом вымораживания будет иметь бесспорное преимущество по сравнению с применением для этих целей метанола. [c.24]

    Схема установки, запроектированной для осушки природного газа любым из указанных гликолей, представлена на рис. 11.4. Эта схема предусматривает вакуумную регенерацию осушительного раствора и типична для крупных установок, запроектированных для достижения максимальной глубины осушки газа. Как видно из схемы, нроцесс сравнительно прост. Поток гликоля, содержащий 1—5% воды, контактируется с газом в противоточной сравнительно невысокой колонне. Абсорбируемая вода несколько разбавляет гликоль и перед повторным использованием его в абсорбере разбавленный раствор необходимо снова концентрировать. Концентрирование [c.257]

    Особенно эффективно применение мембранной технологии для очистки природного и нефтяного газов от СОз для увеличения нефтеотдачи пластов [45]. При этом производительность установки может быть легко наращена простым увеличением числа мембранных модулей. При этом эффективная работа последних невозможна без предварительной обработки газовой смеси осушки, сепарации и фильтрации от механических примесей. [c.75]

    В разделе III были рассмотрены все основные способы и процессы переработки газа, различные варианты технологического оформления этих способов (т. е. различные технологические схемы). Однако, несмотря на их различие, большинство узлов и простых процессов являются общими для всех схем и способов переработки газа. Так, общими являются процессы очистки от механических примесей и капельной жидкости очистки от СО2 и HjS (если они присутствуют в сыром газе) осушки от влаги компримирования нагнетания жидкости теплообмена холодильные, циклы низкотемпературная конденсация и сепарация двухфазных потоков смешение и разделение потоков. Дополнительными узлами в схемах НТК являются деэтанизация ШФУ, деметанизация и в самых современных схемах дросселирование жидких потоков и детандирование. Для схем НТА такими дополнительными узлами являются абсорбция, АОК и десорбция, а для схем НТР — ректификация. Поэтому чтобы рассчитать любую современную схему переработки газа, необходимо уметь рассчитывать следующие процессы  [c.268]

Рис. 22. Схема простой установки адсорбционной очистки или осушки природного газа. Одноступенчатая адсорбция с одной рабочей зоной. Рис. 22. <a href="/info/69155">Схема простой</a> <a href="/info/1799790">установки адсорбционной очистки</a> или <a href="/info/143091">осушки природного газа</a>. Одноступенчатая адсорбция с одной рабочей зоной.
    Очистка от серы природного газа. При помощи молекулярных сит можно полностью очистить природный газ от сероводорода и меркаптанов. Этот адсорбент можно многократно полностью регенерировать без образования каких-либо вредных отложений или снижения адсорбционной емкости в результате других нежелательных явлений. Однако для экономичности этого процесса потребуется разработать новые циклы регенерации. Основным условием экономичности эксплуатации было в данном случае предельное снижение расхода продувочного газа, поскольку его приходится в последующем сжигать на факеле или использовать в качестве топлива. Последнее объясняется тем, что сернистые соединения из продувочного газа невозможно выделить простой конденсацией, как из воды в адсорбционных системах осушки природного газа. [c.84]

    Применение молекулярных сит в процессах осушки и очистки началось раньше, чем в других областях, вследствие наличия сравнительно совершенных технологии и аппаратурного оформления этих процессов, что облегчило внедрение новых адсорбентов. Однако обычные схемы с регенерацией простым нагревом обычно оказываются неэкономичными для разделения основных компонентов жидкостных потоков. Разумеется, имеются исключения примером таких исключений может служить описанное выше удаление примесей из дымового газа или генераторного азота. По экономическим показателям этот процесс может конкурировать с любыми другими способами как из-за отсутствия необходимости улавливания двуокиси углерода и небольших габаритов установок, так и в связи с возможностью использования в качестве продувочного газа воздуха, достаточно дешевого для последующего выброса его в атмосферу. Однако подобное сочетание благоприятных условий встречается сравнительно редко. [c.90]

    Замена обычных сорбентов цеолитами позволяет в ряде случаев (например, при осушке природного газа на промыслах) избежать стадии охлаждения осушаемого газа, что приводит к значительному сокращению энергозатрат и упрощению схемы. Поскольку адсорбционная способность цеолитов мало меняется с повышением температуры, тепло, выделяющееся в процессе поглощения паров воды, не оказывает значительного влияния на активность сорбента. Поэтому конструкция адсорберов с цеолитами может быть предельно проста (без охлаждающих змеевиков внутри аппарата) и процесс осушки проведен в адиабатических условиях. Малая чувствительность адсорбционной способности цеолитов к температуре позволяет уменьшить время охлаждения адсорбента после его регенерации, в результате чего рабочий цикл осушающей установки сокращается и, следовательно, увеличивается ее производительность. [c.371]

    Одним из простых способов технологии для увеличения производительности и снижения эксплуатационных затрат газового промысла с системой адсорбционной осушки газа является байпа-сирование части отсепарированного газа минуя адсорберы. Суть данного способа состоит в том, что путем смешения части сырого газа (отсепарированного) с газом, имеющим точку росы более чем по ОСТ 51.40-83, позволяет получить смесь, которая будет отвечать требованиям. [c.50]

    Потери за счет испарения. Хотя давление паров этаноламинов относительно невелико, потери их из-за испарения значительны вследствие исключительно больших объемов газа, проходящих через раствор. Потери моно- и диэтаноламина из-за испарения водных растворов этих аминов можно рассчитать, пользуясь рис. 3.6, на котором представлено давление паров для нескольких типичных концентраций растворов обоих аминов. Потери химикалий из-за испарения можно устранить различными методами. Наиболее простой из них — промывка очищенного газа водой или гликолем в небольшой секции насадочной или тарельчатой колонны (см. гл. вторую). Испарившийся амин можно выделить также адсорбцией на боксите или аналогичных твердых веществах с последующей регенерацией насыщенного адсорбента нагреванием и отдувкой паром [12]. Адсорбционное улавливание весьма эффективно и позволяет получить газ с очень низким содержанием паров растворителя адсорбированный амин можно полностью регенерировать. Многие из адсорбентов имеют высокую адсорбционную емкость и продолжительный срок службы поэтому рассматриваемый метод вполне экономичен. По схеме такие установки аналогичны системам осушки газов твердым поглотителем. Если поступающий газ насыщен водяными парами и желательно произвести его осушку, то размеры адсорбера будут определяться адсорбционной емкостью поглотителя по отношению к воде, так как в момент насыщения слоя водой проскок амина еще невозможен. Однако в тех случаях, когда через слох поглотителя пропускается частично осушенный газ, например газ с установки гликоль-аминовой очистки, и дополнительная осушка его не требуется, то равновесное насыщение [c.56]

    Наиболее простым способом уменьшения содержания водяных паров в газе является пропускание газа через ряд небольших сборников, заполненных твердым едким натром. О применении новейш. чх методов осушки газов при очистке синтез-газа — адсорбции силикагелем или активированной окисью алюминия— з литературе не сообщается, хотя осушать газ этими способами было бьГлегче, так как осушаемый газ находится под повышенным давлением. [c.353]

    Общая схема одной из масс-спектрометрических установок представлена на рис. 69. Здесь применен 60-градусный масс-спектрометр Нира (трубка его изогнута под углом 60°). В этой схеме имеется газозаполняющее устройство, предназначенное для подготовки анализируемых газовых проб и их впуска в трубку масс-спектрометра. Газозанолняющее устройство имеет отдельный вакуумный масляный насос, систему стеклянных баллонов для газовых проб, манометры — простые ртутные и для измерения высокого вакуума (типа Пирани), а также ловушки, погруженные в жидкий азот, трубки с аскаритом и т. п. приспособления для очистки и осушки газа. [c.208]

    Синтетические цеолиты могут быть отнесены к новому классу скптстических неорганических материалов — классу пористых кристаллов. Интерес к этим материалам начал возрастать особенно быстро с конца 50-х гг. этого столетия, когда были выявлены возможности воспроизводимого синтеза цеолитов в сравнительно простых условиях и наметились основные области их практического применения (катализ, осушка газов, адсорбционное разделение смесей, тонкая очистка, хроматография, вакуумная техника). [c.6]

    Диэтиленгликоль НОСНзСНдОСНаСНаОН—простой эфир этиленгликоля—вязкая, глицериноподобная, бесцветная жидкость, почти без запаха темп. кип. 244,5°, уд. вес 1,120 г/см (при 20°). Растворяется вводе, является растворителем для смол и эфиров целлюлозы. Благодаря высокой гигроскопичности диэтиленгликоль применяют для осушки газов. Преимущество диэтиленгликоля, как осушающего средства, по сравнению с серной кислотой состоит в том, что он не вызывает коррозии аппаратуры и легко регенерируется при упаривании в вакууме. [c.423]

    Таким образом, удовлетворительная противокоррозионная защита газосборной системы на Уртабулакском ГКМ и магистрального газопровода Уртабулак — Мубарек достигалась сочетанием подготовки газа к транспорту (гликолевая осушка газа до низкой относительной влажности) с рациональным применением ингибиторов коррозии. Использование гликоля для осушки газа не приводило в данном случае к возникновению дополнительных коррозионных проблем (либо о них просто не упоминалось). [c.37]

    Казалось бы простейшим способом улучшения показателей качества осушки газа при подключении ДКС 1 -й ступени, (2-й очереди) является увеличение плотности орошения. Этот способ предлагали специалисты ВНИПИгаздобычи в проекте ДКС 2-й очереди (1-й ступени) УКПГ Уренгойского ГКМ . Однако более внимательный анализ [c.37]

    Паро-газовая смесь, выходящая из конденсатора 5, содержит п(авным образом хлористый водород и дифтордихлорметан с примесью монофторгрихлорметана, монохлортрифторметана и фтористого водорода. После снижения давления почти до атмосферного в дроссельном вентиле 6 фтористый водород отделяется в башне 7, заполненной кусками фтористого калия. Последний реагирует с НР, образуя дифторид калия КНРг, который можно использовать для получения фтора методом электролиза. Дальнейшую очистку от хлористого водорода можно осуществлять ранее рассмотренным методом с получением концентрированной соляной кислоты. Иа схеме изображена простейшая очистка путем абсорбции избытком воды в скруббере 8 и водной щелочью в скруббере 9. Осушку оставшегося газа можно проводить концентрированной серной кислотой, циркулирующей в колонне 10. [c.166]

    Нами рассмотрены публикации об эффективном применении в нефтегазодобыче одиночной с тангенциальным сопловым вводом газов трехпоточной вихревой трубы с вихревым эффектом при подготовке попутных нефтепромысловых газов сепарацией и последующей осушкой в полевых условиях, особенно перед транспортировкой, представленном в многочисленных трудах бывшего ВНИИОЭНГ, Сервиснефтегаз, ГИАП и ТрансЭкс (авторы М. А. Жидков, И. Л. Лейтес, Р. М. Исхаков, А. П. Гусев, В. В. Николаев и др.). Трехпоточные вихревые трубы в аппаратурном оформлении достаточно просты по конструкции, отличаются высокой технологичностью в изготовлении, а также обладают эксплуатационной надежностью и работоспособностью. [c.308]

    Проблему использования попутного газа нефтедобычи в качестве энергоносителя, несмотря на ее актуальность с точки зрения не только эффективного освоения вторичных энергоресурсов, но и экологии, не всегда удается решить технологически просто и надежно, а значит, экономически выгодно. При этом основную негативную роль играют те причины, которые не позволяют без значительных капитальных и энергетических затрат качественно подготовить попутный газ к транспорту. Главный позитивный фактор, который может обеспечить дешевую осушку и очистку нефтяного газа, — это высокий уровень пластового давления. Однако, даже на тех месторождениях, где давление относительно велико, нецелесообразно проводить дегазификацию нефти при избыточном давлении более 5-6 МПа, так как при этом снижается дебит скважин, а также уменьшается количество попутного газа после первой ступени дегазации, что приводит к увеличению нагрузки по газу на вторую, недиабатную ступень технологии подготовки нефти (дегазация с применением подогрева), в результате чего повышаются затраты тепла и увеличивается себестоимость добываемой нефти. [c.331]

    Наиболее приемлемый перепад давлений нефтяного газа, позволяющий осуществлять его низкотемпературную очистку, составляет 1,3-1,6 МПа. Для повышения давления попутного газа можно использовать компрессорную станцию, но тогда процесс осушки становится нерентабельным. Указанный, весьма небольшой, перепад давлений практически исключает возможность реализации традиционной схемы низкоггемпературной сепарации (НТС), основанной на эффекте дросселирования. Расширители другого рода, с более высоким температурным КПД (турбодетандеры, волновые детандеры, пульсационные аппараты) весьма сложны и ненадежны в эксплуатации, особенно в полевых условиях. Поэтому для осушки нефтяного газа целесообразно применить трехпоточные вихревые трубы (ТВТ) Ранка-Хилша — достаточно простые и надежные устройства, которые наряду с получением большего по сравнению с дросселированием количества холода, обеспечивают отделение сконденсированной жидкости непосредственно из закрученного потока. [c.331]

    Процессу хлорирования предшествуют испарение хлора и его осушка, необходимая даже при весьма незначительном содержании влаги в газе. Устройство аппаратов для испарения хлора зависит главным образом от его расхода. Для испарения неболь-ик )го количества хлора может быть использован тот же баллон, в котором находится газ. При этом баллон уста 4ав швают вентилем книзу (рис. 131), так ЧТ061.1 открытый конец сифонной трубки баллона оказался соединенным с газовым пространством, и выпускают из баллона только газообразный х юр. Необходимо чтобы скорость выхода хлора не превьипала скорости е1 о испарения за счет теплообмена с окружаюш,ей средой. Этот способ испа )ения, не требующий никакой специальной аппаратуры, весьма прост и удобен, но область его применения ограничена. [c.249]

    На отечественных предприятиях газовой и нефтяной промыщ-ленности в качестве ингибитора гидратообразования используют в основном метанол и гликоли. Метанол имеет высокое давление насыщенных паров, что затрудняет извлечение его из газового потока, усложняет его регенерацию и приводит к большим потерям этого ингибитора. Поэтому метанол применяют в основном в проточных системах — в скважинах, шлейфах и магистральных газопроводах — для разложения образовавшихся гидратных пробок (без последующей его регенерации), так как он обеспечивает значительную депрессию температуры гидратообразования. Кроме того, метанол применяют в процессе низкотемпературной сепарации (НТС) для предупреждения образования гидратов при дросселировании и охлаждении газа с целью выделения из него тяжелых углеводородов и паров воды. Имеется опыт эффективного многократного использования метанола на Мессояхском газоконденсатном месторождении, где потери метанола были сведены к минимуму в результате полной регенерации метанола из водных растворов и высокой степени извлечения метанола из газового потока на установке адсорбционной осушки и очистки газа цеолитами ЫаА (6—8]. В качестве ингибитора широко используют гликоли (ЭГ, ДЭГ и др.), несмотря на то, что стоимость их выше стоимости метанола. Это объясняется низким давлением насыщенных паров гликолей и возможностью полной регенерации их путем удаления воды с помощью простого физического процесса — выпарки ее из водных растворов гликолей. Не исключено, что в перспективе в связи со снижением себестоимости производства метанола и со-верщенствованием техники и технологии адсорбционных методов очистки газа этот ингибитор будет шире использоваться в газовой и нефтяной промышленности. [c.117]

    Непрерывно действуюш ая осушка эти-ленгликолями сравнительно проста в эксплуатации и пе требует больших первоначальных капиталовложений [10]. На рис. IV.5 ириведена схема последней модификации обезвоживаюш,ей природный газ установки с этиленгликолем [15]. Влажный природный газ поступает в нижнюю часть скруббера 1, устанавливаемого как можно ближе к контактору 2 назначение скруббера — отделить жидкую воду, сконденсировавшиеся углеводороды, смазочное масло, ржавчину, частицы грунта и любую грязь, которая может попасть в трубопровод с газом. В контакторе 2 газ противотоком обрабатывается концентрированным раствором этиленгликоля. Разбавленный, отработанный раствор этиленгликоля сбрасывается регулятором уровня в газосенаратор 4, предпазначенный для отделения кислорода и сероводорода, иоглош енных этиленгликолем из газа в контакторе. Затем этиленгликоль проходит каменный или мешочный фильтр 6 для отделения взвешенных частиц грязи, ржавчины и пр. Через теплообменник 8 разбавленный этиленгликоль поступает в середину колонны-регенератора 9, где из него отгоняется вода. Тепло, необходимое для испарения воды, сообщается паровым, огневым или обогреваемым горячими нефтяными фракциями кипятильником 12. Вода ожижается в конденсаторе орошения 10 и насосом вновь подается па орошение регенератора 9. С низа колонны концентрированный раствор этиленгликоля выводится регулятором уровня в аккумулятор через тенлообменник 8. Отсюда циркуляционный насос 5 вновь подает этиленгликоль в контактор через холодильник 3. [c.154]


Смотреть страницы где упоминается термин Осушка газов простая: [c.618]    [c.310]    [c.310]    [c.208]    [c.59]    [c.290]    [c.315]   
Абсорбционные процессы в химической промышленности (1951) -- [ c.8 , c.41 , c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Осушка

Осушка газов



© 2025 chem21.info Реклама на сайте