Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы, реологические свойства

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]


    Основные положения доклада сформулированы автором следующим образом. Асфальтены и нефтяные смолы суть две группы, составляющие коллоидно-дисперсную часть сырой нефти. Эти две группы веществ различаются между собой по составу, строению-размерам частиц и свойствам. При переработке нефти коллоидные частицы концентрируются в остатках от перегонки, не претерпевая существенных изменений в структуре. Асфальтены содержат преобладающее количество содержащихся в нефти неуглеводород -ных компонентов. Нефтяные смолы построены почти исключительно из углеводородов. Рассматривается состав смол и асфальтенов и причины их сильно различающихся реологических свойств, а так же влияние поверхностно-активных свойств веществ, содержащихся в асфальтенах, на смачивающие свойства битумов. Нельзя не согласиться с утверждением Г. Неймана, что многие свойства асфальтенов, прежде всего поверхностно-активные, часто довольно сильно меняются при отсутствии существенных изменений в химическом составе и структуре последних, что изменения этих свойств могут быть обусловлены наличием в асфальтенах примесей свободных нафтеновых кислот и редкоземельных солей нафтеновых кислот. Справедливо и утверждение о гетерогенности асфальтенов и нефтяных смол, а также о их слабой изученности. Однако два основных вывода доклада Г. Неймана о чисто углеводородном составе нефтяных смол и об отсутствии изменений в строении смол и асфальтенов при высокотемпературной переработке нефти, нахо- [c.41]

    Сущность улучшения реологических свойств нефти (предельное напряжение сдвига, вязкость, тиксотропия и т.д.) состоит в том, что ее охлаждают до образования парафинистой структуры, а затем механическим путем разрушают последнюю. Содержащиеся в нефти смолы и асфальтены обволакивают осколки парафинистой структуры, препятствуя их повторному соединению. Полученная таким образом суспензия парафина в нефти сравнительно длительное время сохраняет необходимую подвижность при обычных скоростях перекачки [c.69]

    Хорошо известно, что в состав нефти входят углеводороды — парафины и различные комплексные соединения, такие как смолы, асфальтены, оказывающие сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. Течение таких жидкостей не подчиняется закону Ньютона и их принято называть аномальными. [c.71]


    Различными исследователями показано присутствие серы в том или ином виде в углеводородах практически всех классов. Связанная сера в виде полисульфидных цепочек обнаруживается в больших количествах в алкильных заместителях асфальтенов и в несколько меньших количествах - в смолах [2, 3]. Растворенная сера обнаружена преимущественно в ароматических фракциях [2]. Исследованиями, проведенными с помощью электронной микроскопии, показано, что при введении серы в битум часть её внедряется в асфальтеновые структуры, изменяя реологические свойства битума [4]. [c.77]

    Состояние таких коллоидных систем оказывает решающее влияние иа физико-механические свойства вообще и на реологические свойства в особенности. Это имеет очень важное значение для решения трудных и ответственных задач технологии нефти и исиользова-иия таких нефтепродуктов, как технические битумы, топочные мазуты, консистентные смазки и т. п. При рассмотрении подобных коллоидных систем часто недостаточно учитывают качественные особенности их основных компонентов и почти совсем не учитывают роль нефтяных смол как равноправного компонента (наряду с углеводородами) дисперсной системы. Между тем эти факторы оказывают весьма существенное влияние на всю систему в целом, на ее физико-механпческие свойства, которые и определяют в основном технические качества таких иродуктов. [c.495]

    V Настоящая "и две последующие главы посвящены математическому описанию и построению моделирующего алгоритма макрокинетики некоторых стадий производства ионообменных смол с использованием принципов системного анализа математического моделирования процессов химической технологии [1, 2]. В частности, исследуются а) процесс предварительного набухания, характеризующийся изменением реологических свойств полимерной системы (системы сополимер — растворитель ) б) процессы химического превращения сополимеров, осложненные изменяющимися условиями транспорта исходных веществ в зону реакции в) процесс отмывки (гидратации) ионита после сульфирования. [c.295]

    Изменение реологических свойств и дисперсности нефтяных остатков после удаления асфальтенов и части смол [c.32]

    Учитывая сказанное выше, можно сделать вывод, что эффективность приложения нагрузки при карбонизации, очевидно, связана не с изменением характера процессов деструкции и поликонденсации, а с изменением реологических свойств фенолформальдегидной смолы под давлением и, как следствие этого, с появлением возможностей для ориентации образующихся ароматических макромолекул. [c.193]

    Однако мягкий пек, полученный при фракционировании смолы, несколько отличается от смеси среднетемпературного пека с антраценовой фракцией по содержанию летучих и веществ, растворимых в толуоле. Последнее объясняется ускорением процессов термолиза пека при добавках антраценовой фракции и уменьшением содержания а- и ах-фракций в связующем. С этим связано специфическое реологическое поведение пеков и условия переработки углеродных смесей. Оно заключается в том, что при одинаковых температурах смешения и прессования меньшая точность корректировки реологических свойств смесей требуется при предварительной термообработке при 300° С второй антраценовой фракции каменноугольной смолы до получения в ней содержания а-фракции порядка 20-25%. [c.119]

    Исследования по оценке влияния барита на свойства обратных эмульсий, приготовленных с использованием нефтей, проведены на примере нефти Ромашкинского месторождения. При прочих равных условиях (табл. 32) такие эмульсии менее агрега-тивно устойчивы к действию барита, чем эмульсии на основе дизельного топлива. По-видимому, это связано с наличием в объеме дисперсионной среды меньшего количества активного эмульгатора, который способен гидрофобизировать барит, ввиду его связывания ассоциатами асфальтенов, смол и других высокомолекулярных компонентов нефти. При этом также наблюдается существенный рост значений их структурно-реологических свойств, что ухудшает технологичность таких систем. Для устранения отмеченных недостатков следует снижать объемное водосодержание в эмульсиях (табл. 32, п.5 - п.11), а при необходимости и увеличивать содержание эмульгаторов, что должны учитывать на практике. [c.114]

    В промышленности уже в течение многих лет применяется окисление прямогонных нефтяных остатков, главным образом с целью изменения реологических свойств получаемых из них битумов. В процессе продувки остатков воздухом кислород взаимодействует с компонентами сырья при температуре 200—350 °С. При этом химический состав и соответственно молекулярная структура и свойства остатков изменяются. Соотношение углерод водород для асфальтенов снижается при окислении с 11 1 до 10,5 1. Для смол и масел это соотношение уменьшается, но в меньшей степени (с 8 1 до 7,7 1). Пары воды, двуокись углерода и низкомолекулярные продукты окисления (эфиры, кислоты и альдегиды) удаляются из реакционного объема вместе с продувочными газами. Целевым продуктом является окисленный битум, который существенно отличается от исходного, неокисленного сырья. При окислении изменяется его групповой состав уменьшается содержание масел и значительно возрастает количество асфальтенов, продуктов поликонденсации. Количество силикагелевых смол в некоторых случаях уменьшается, а в других несколько возрастает. [c.32]


    Асфальтены и смолы оказывают сильное влияние на вязкость нефти. Более того, нефть, содержащая значительное количество асфальтенов, имеет, как оказалось, непостоянную вязкость. При большом количестве парафинов в нефти ее вязкость тоже оказывается переменной, зависящей от скорости сдвига. Эти особенности реологических свойств нефти обусловлены коллоидным состоянием диспергированных в ней парафинов или асфальтенов. [c.3]

    Известно, что структура адсорбционного слоя, полученного при адсорбции из раствора, неидентична той, которая реализуется в отсутствие растворителя. Поэтому представляет интерес сопоставление результатов определения толщин адсорбционных слоев, полученных из растворов и в отсутствие растворителя. Это оказалось возможным лри использовании олигомерных соединений, которые, находясь в вязкотекучем состоянии с относительно невысокой вязкостью, обладают практически теми же свойствами, что и высокомолекулярные соединения. Изучение реологических свойств олигомеров и их растворов было проведено в работах [358, 359]. При исследовании эпоксидной смолы (ЭД-20) с молекулярной массой 500, наполненной 17% (об.) стеклянного порошка, было найдено, что смола ЭД-20 и система ЭД-20 — наполнитель в диапазоне скоростей сдвига у от 10 2 до 10 с ведут себя как ньютоновские жидкости, т. е. их вязкость не зависит от режима деформирования. Вязкость смолы ЭД-20 закономерно возрастает с увеличением содержания стеклянного порошка. [c.186]

    Исследования последних лет и особенно богатая практика освоения под разработку нефтяных и газовых месторождений в новых районах и стратиграфических комплексах доказывают необходимость более полного учета геолого-физических особенностей залежей и обусловленных ими микрофильтрационных и химикомолекулярных процессов при проектировании технологических мероприятий (в промышленной разведке, вскрытии и освоении пластов, при прогнозах технико-экономических показателей разработки и внедрении методов повышения нефтеотдачи пластов). Такая тенденция в работах по нефтяным и газовым месторождениям твердо наметилась и реализуется. В последние годы открыто и осваивается разработкой много месторождений углеводородов с осложненными физико-геологическими условиями, близкими к аномальным. Их влияние на технологические решения велико, а необходимость учета на всех стадиях работ очевидна. Речь идет о таких факторах, с которыми ранее нефтепромысловые специалисты вообще не сталкивались или знали об их влиянии весьма мало. К ним относятся аномальные термобарические условия вза лежах на больших глубинах (свыше 5000 м), особенности строения коллектора глубинных залежей, необычность характера фильтрации в пластах нефти, обладающей сложными реологическими свойствами, повышенной и высокой вязкостью, большим содержанием смол, парафинов и асфальтенов. Слабоизученными и неучитываемыми особенностями являются также многофазность и неоднородность насыщения коллекторов углеводородами (нефтегазовые и нефтегазоконденсатные залежи) содержание в газонасыщенных частях залежей остаточной (погребенной) нефти, существование сложного емкостного пространства коллектора (трещиновато-кавернозно-пористого) и т. д. Особенно сложно учитывать факторы при работах по повышению нефтеотдачи, так как поведение агентов воздействия по многим методам не изучено до конца даже в простых пластовых условиях. [c.172]

    Решение проблем трубопроводного транспорта высоковязких нефтей основано на разработке принципов физико-химической механики нефтей с учетом происходяш их в них фазовых превращений. Реологическое поведение высоковязких и высокозастываю-щих нефтей в условиях переменных температур, скоростей воздействия п величин деформирования определяется содержанием асфальтенов, смол и высокомолекулярных парафиновых углеводородов. Увеличение доли указанных компонентов вызывает структурирование нефтей, проявление неньютоновскпх свойств [1]. Целью нашпх исследований являлось изучение реологических свойств нефтех различных химических типов и установление влияния на них состава высокомолекулярных компонентов и условий формирования структурных образований в нефти. [c.102]

    Реологические свойства битумов зависят от их структуры. Битумы можно рассматривать как растворы асфальтенов и твердых смол среднего молекулярного веса [c.59]

    Битум лаковый применяется в качестве связующего в газетных и некоторых других красках высокой и офсетной печати. В последнее время в состав красок высокой и офсетной печати стали вводить нефтяной пек для увеличения прочности оттиска к истиранию. Асфальтены являются основным компонентом пеков и битумов. Представляло интерес сравнить два типа асфальтенов нативных, полученных из сырой нефти (асфальтиты), и вторичных — выделенных из высокоароматизированной пиролизной смолы. Первый тип асфальтенов имеет лоскутное строение и состоит из полициклических фрагментов, соединенных алифатическими цепями. Размеры и состав фрагментов различны. Асфатштены второго типа отличаются компактным строением и включают бензольные циклы, соединенные друг с другом путем ката- и нерикон-денсации. Предполагалось, что подобное различие в строении молекул асфальтенов должно определенным образом влиять на реологические свойства их растворов в ми- [c.252]

    Степень снижения температуры застывания и улучшения реологических свойств нефтей зависит от концентрации депрессатора, содержания в нефти естественных ПАВ (смол и асфальтенов), парафиновых углеводородов и их молекулярной массы. [c.113]

    Пфейффер [4] наиболее близко подошел к рассмотрению зависимости физико-механических свойств битумов как коллоидных систем от количественного соотношения основных компонентов (асфальтенов, смол, углеводородов) и их химических особенностей. Он сделал попытку выяснить влияние каждого из этих компонентов коллоидной системы на ее реологические свойства. Он указал на важное значение атомарного соотношения С Н как показателя степени ароматичности отдельных компонентов. Подчеркивая ароматическую природу асфальтенов и, как следствие этого, большую или меньшую склонность их к поляризации, Пфейффер делает заключение о возможности управле-, ния процессами гелеобразования таких коллоидных систем, исполь- / зуя склонность асфальтенов к поляризации. Присутствующие ц в молекулах асфальтенов кислород-, серу- и азотсодержащие поляр-  [c.495]

    В ряде таких растворов используют нефтерастворимые органические частицы, например воски и смолы, выполняющие функцию закупоривающих материалов. В некоторых растворах при достаточно низких температурах эти частицы могут деформироваться и действовать как материалы для регулирования фильтрации и образования сводовых перемычек. Эти системы лучше всего работают при температурах от 65 до 95°С. При температурах ниже 65 °С такие частицы становятся слишком твердыми, а при температурах выше 95 °С — чрезмерно мягкими. В системе, описанной Фишером, органические частицы состоят из смеси воска, ПАВ и сополимера этилена и винила. С помощью таких частиц фильтрационные потери по методике АНИ можно снизить до 24 см , а при добавлении хромового лигнита — до 7 см . Для регулирования реологических свойств в раствор можно добавлять ГЭЦ и ксантановую смолу. С целью увеличения плотности до 1,2 г/см можно использовать хлорид калия. [c.432]

    Анализ данных, приведенных в табл. 9.7 показывает, что предлагаемые краски имеют улучшенные показатели реологических свойств оптимальные значения текучести 26-40 мм и структурирования — аномалия вязкости 3-7 единиц и повышенную интенсив1юсть — оптическая плотность оттиска толщиной 2 мкм на газетной бумаге составляет 1,02- 1,18 относительных единиц. Применение специально разработанного полиграфического мас.ла с высоким содержанием ароматических углеводородов и смолисто-асфальтеновых соединений в сочетании с нефтяными или канифольными смолами позволяет улучшить смачивание технического углерода маслом, за счет чего улучшаются реологические свойства краски, обеспечиваются требуемые текучесть и аномалия вязкости. За счет улучшения реологических свойств повышается процент перехода краски с формы на бумагу, улучшаются четкость графического изображения и соответственно увеличивается интенсивность — оптическая плотность оттиска. Использование предлагаемого полиграфического масла позволяет существенно снизить затраты на производство краски. Существенно сокращается расход дефицитного сырья канифоли в среднем на 130 кг на 1 тонну краски. Разработанная композиция успешно испытана в промышленных условиях. [c.268]

    Физические свойства растворов асфальтенов и смолисто-асфальтеновых вешеств вообще подробно исследовал Дармуа [5]. Исходя пз того, что не существует резкого различия между смоламп и асфальтенами и что в такпх сложных системах, как природные и искусственные асфальты, очень трудно установить связь между химическим составом системы и ее физическим состоянием, он изучал чисто физическую сторону вопроса, а именно физические, прежде всего реологические свойства системы в целом и основных компонентов ее составляющих (асфальтены, смолы углеводороды) в отдельности, не задаваясь целью выяснить их химический состав и строение. [c.498]

    Для исследования процесса структурирования в высокотемпературной области Э. X, Зиннуровым предложен многофункциональный высокотемпературный вискозиметр (вискозитрон), работающий в комплексе с электронно-вычислительной и микропроцессорной техникой [181]. Прибор является универсальным в качестве измерительных поверхностей в зависимости от типа и консистенции исследуемого материала допускается подсоединение следующих измерительных систем биконус — конус, конус — плоскость, цилиндр — цилиндр. На таком приборе можно измерять вязкость нефтепродуктов в пределах (1-10 — 1-10 ) Па-с. С помощью впскознтрона возможно исследование также различных нефтепродуктов (нефти, смолы, пеки, битумы, пасты, суспензии, эмульсии). Результаты измерений вязкостно-кинетических функций и температурно-времепного режима могут быть представлены на дисплее ЭВМ, графопостроителе, что существенно повышает эффективность исследований, позволяя оперативно находить характерные закономерности реологических свойств изучаемых объектов. [c.139]

    В тяжелых нефтях и нефтяных остатках асфальтены диспергированы в высокомолекулярных углеводородах (смолы и масла), образуя коллоидную микрогетерогенную систему с предельно высокой дисперсностью, а следовательно, с очень большой поверхностью дисперсной фазы и дисперсионной среды. Реологические свойства таких систем определяются соотношением между конденсируюши-мися, полимеризующимися и дисперсно-структурными компонентами регулированием количества этих компонентов достигается необходимая структурно-механическая прочность нефтяных остатков. [c.56]

    Большая часть расплавленных каменноугольных смол и битумов обладает ньютоновскими свойствами. Реологические свойства более твердых битумов зависят в значительной мере от химического состава сырой нес и, из которой они получены. Ха 1актер течения битума во многом зависит и от метода его получения. Таким образом, твердый битум может быть практически простой жидкостью. В табл. 3.4 представлен ряд твердых битумов, обладающих в условиях измерения свойствами ньютоновской жидкости. [c.118]

    Большая часть имеющихся данных о реологических свойствах каменноугольных смол получена при температурах, превышающих ШО °С благодаря этому указанные смолк обнаруживакя ньютоновские свойства. Однако при более низких температурах некотб]рые смолы могут обладать неньютоновскими свойствами. В табл. 3.5 приводятся характеристики И5] каменноугольных смол с темпера- [c.119]

    Реологические свойства битумов зависят от их структуры. Битумы можно рассматривать как растворы асфальтенов и твердых смол среднего молекулярного веса 1000-4500 в более низкомолекуляриой среде нефтяных масел и плавких смол среднего молекулярного веса 500-600 [94]. Структурную характеристику битумов можно выразить показателем дисперсности Д[82]  [c.37]

    Капитальный ремонт скважины. Растворы, применяемые при капитальном ремонте скважин, отличаются от буровых растворов тем, что обычно в скважине они обогащаются сводообразующими частицами, которые приходится вводить в их композицию. Прежде важной роли сводообразующих частиц не понимали, и для капитального ремонта часто применяли жидкости, содержащие только коллоидные материалы, такие как крахмал, КМЦ, гуаровую смолу или бентонит. Эти жидкости обладали необходимыми реологическими свойствами и, казалось, имели приемлемые фильтрационные 424 [c.424]

    Стабилизирующей основой растворов являются крахмал (Фито-РК) или целлюлоза (КМЦ, Се1ро1-8Ь), регулятором фильтрационных и реологических свойств - биополимер (Робус, КК), гидрофобизаторами - неионогенное ПАВ (ПКД-515) и полигликоли (ПЭГ), смазочной добавкой - нефть или Сонбур-1101, ингибитором - минеральные соли и ПЭГ. Последний представляет собой смесь гомологов и смол (диэтиленгликоль - 15...20 %, триэтиленгликоль - 25...30 %, тетраэтиленгликоль - 35...40 %, пентаэтиленгликоль - 10... 15 %, смолистые вещества 5... 10%), выполняет в растворе, кроме того, функции гидрофобизатора и [c.10]

    Различные пластификаторы можно сравнивать по эффективности их действия. Под эффективностью понимают концентрацию пластификатора, необходимую для обеспечения определенной эластичности пластизоля. Наиболее часто в условиях производства используют стандартный пластификатор DOP (ди-2-этилгексилфталат). Предположим теперь, что 70 ч. некоторого пластификатора X (на 100 ч. смолы) обеспечивают такую же эластичность изделия, как и 60 ч. DOP. Тогда говорят, что эффективность пластификатора X составляет 60/70. Целесообразность применения того или иного пластификатора определяется также относительной стоимостью единицы объема смолы и пластификатора. При составлении композиций всегда существует возможность подбора требуемых реологических свойств, что можно осуществить, например, варьируя выбор смолы. Сродство пластификатора с низкомолекулярными смолами и сополимерами способствует их отверждению при сравнительно низких температурах. Смеси, содержащие и крупные, и мелкие полимерные частицы, образуют маловязкие пластизоли. Смолы с одинаковым составом, молекулярным весом и размером частиц, но полученные в различных производственных условиях, обладают различными реологическими свойствами. Если же все перечисленные методы регулирования свойств пластизолей оказываются недостаточными, то можно использовать специальные желатинизирующие агенты. Это позволяет изменять толщину покрытий, не прибегая к предварительному нагреву форм. [c.166]

    Высокостирольные смолы применяются для изготовления пористых резин и особенно пористых подошвеннь1х резин с замкнутыми порами Использование синтетических смол в пористых резинах, так же как и, в монолитных резинах, способствует повышению твердости, улучшению эксплуатационных и технологических свойств изделий и снижению усадки вулканизатов. Термопластичная смола, введенная в рецептуру, изменяет реологические свойства сырой смеси, способствуя процессам порообразования. [c.53]

    В настоящей работе проведено реологические исследования наполненных эпоксидно-каучуковых смесей, где щгтем изменения химической природы эпоксидных олигомеров и жидких каучуков менялось их сродство, которое оценивалось по разности величин параметров растворимости. Характер образующейся структуры оценивался по кривым течения композиций, а также по величине энергии активации вязкого течения. Вми исследованы реологические свойства смесей неотвержценннх олигомеров, а также системы, наполненные порошком алюминия со сферической формой частиц. Обнаружено, что величина относительной вязкости (отношение вязкостей наполненного и чистого олигомеров) для систем с бутадиеннитрильными каучуками падает с увеличением содержания в них акрилонитрила. Показано, что в плохо совместимых наполненных олигомерах образуется коагуляционная структура из-за отсутствия на поверхности твердой фазы достаточно эффективного адсорбционного слоя, способного препятствовать контактам между частицами. Выявлено влияние активного наполнителя на механические свойства наполненных материмов, предложен способ бценки их прочностных характеристик. Показано,-что введение алюминия в смесь эпоксидной смолы с бутадиеннитрильными каучуками с близкими значениями параметров растворимости приводит к упрочнению полимерной матрицы. [c.146]

    Исходя И9 вышеизложенного, можно предположить сущест-веинне изменения реологических свойств смоло-асфальтеновых нефтей полуострова Бузачи в результате продолжительного действия ультрафиолетового излучения, В качестве объекта исследования была использована Каражанбасская неЛть со скв.108. Облучение ультрафиолетовш светом пробы нефти, налитой в горизонтальную кювету, проводил при помощи ртутной лампы ПРК-4. [c.106]

    Если для полученных вязких вяжущ11х применить классификации битумов по юс структурно-реологическим свойствам, то данные.материалы наиболее близко подходят под П структурный тип, характеризующийся наименьшим содержанием асфальтанов (не более 18%), смол - болео 36 вес.%, масел - менее 48 вес.%. Такие дорожно-строительные материалы применяются ограниченно, могут использоваться при строительстве дорог низких технических категорий, что подтвердилось результатами испытаний составов горячего мелкозернистого плотного асфальтобетона. Фиаино-иеханичесйие показатели асфальтобетонных смесей, [c.302]


Смотреть страницы где упоминается термин Смолы, реологические свойства: [c.33]    [c.58]    [c.348]    [c.350]    [c.115]    [c.24]    [c.111]    [c.111]    [c.143]    [c.59]    [c.11]    [c.307]   
Химия и технология полимеров Том 2 (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реологические

Реологические свойства

Смолы свойства



© 2025 chem21.info Реклама на сайте