Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологические углерода

    Радиоуглерод образуется из атмосферного азота под действием космических нейтронов. В работе [9] утверждается, что биологический углерод (из городских сточных вод) дает около 10 распадов на 1 г в 1 мин., а углерод из полученной из глубоких скважин нефти оказывается, наоборот, неактивным поэтому возраст углеродсодержащего вещества, например костей, можно определить, исходя из его удельной активности, которая убывала, начиная с того времени, как прекратился обмен с атмосферным углеродом [И]. [c.91]


    Считают, что соотношение С /С в нефтях, которьш образовались из органического вещества, отложенного в морских фациях, в среднем почти на 1% ниже, чем в морских организмах. Величины o С13/С12 ддя нефтей, генетически связанных с неморскими исходными материалами, в среднем почти яа 0,6% меньше этих величин в наземных организмах. Таким образом, если содержание С в древних организмах соответствует его содержанию в современных растениях и животных, а биологический. углерод является начальным источником нефти, тогда процесс образования нефти — это процесс изотопного фракционирования, при котором продукты обогащаются С . [c.101]

    Активный ил представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, водорослей. Количественное и качественное формирование этой экосистемы диктуется искусственными условиями существования. Гетеротрофные микроорганизмы способны усваивать углерод из готовых органических соединений различной химической структуры. Но разные группы микроорганизмов адаптировались к использованию углерода из определенного числа этих соединений. Существенное значение при использовании органических веществ микроорганизмами в качестве источников углерода имеет их строение. Насыщенные соединения — биологически стойкие и могут усваиваться только некоторыми видами микроорганизмов. Ненасыщенные органические соединения— хороший источник углерода для многих микроорганизмов. [c.99]

    Силоксановые каучуки занимают особое место среди других каучуков общего и специального назначения. Это единственные из выпускаемых в настоящее время в промышленном масштабе эластомеров, не содержащие атомов углерода в главных цепях молекул. Несмотря на высокую стоимость полисилоксанов по сравнению с другими каучуками специального назначения (кроме фторкаучуков), их производство быстро растет в большинстве промышленно развитых стран. Это обусловлено их уникальными свойствами, вал нейшими из которых являются сохранение эластичности в наиболее широком по сравнению со всеми другими эластомерами интервале температур и биологическая инертность. [c.462]

    При биологическом использовании глюкозы в качестве источника энергии ее сгорание протекает не в одну стадию. Разложение глюкозы представляет собой сложный процесс, включающий более 25 стадий. На многих из этих стадий высвобождаемая энергия запасается путем синтеза молекул АТФ. Анаэробная ферментация, или гликолиз, обеспечивает предварительное разложение глюкозы с образованием пировиноградной кислоты, а цикл лимонной кислоты завершает окисление углерода в СО2. Атомы водорода передаются молекулам-переносчикам, НАД и ФАД. Эти молекулы повторно окисляются в дыхательной цепи, где происходит дальнейшее запасание энергии путем синтеза новых молекул АТФ, а атомы водорода используются для восстановления О2 в Н2О. [c.338]


    Диоксид углерода и сероводород — неизбежные спутники природного, нефтяного (попутного) и биологического газа ( биогаза ), а также разнообразных технологических газовых смесей, причем содержание СО2 и Нг5 в них может достигать высоких значений — до 40—45% (об.) [47—50]. [c.285]

    Исключительный интерес как с точки зрения геохимии нефти, так и с общих позиций эволюции соединений углерода представляют нефтяные соединения фосфора. В биологических объектах фосфор входит как один из главных элементов в энергетические (АТФ), информационные (ДНК, РНК) и структурообразующие (мембраны) системы. Однако, несмотря на то, что в нефти содержание фосфора может достигать сотых долей процента, т. е. превышать содержание других микроэлементов, о его соединениях почти ничего не известно. Показано, что значительная часть фосфора (от 10 до 80%) переходит при перегонке (18071 мм) в дистил- [c.175]

    В случае отсутствия в биологически очищенной воде исходных органических веществ при денитрификации в качестве углерод-ного питания обычно вводят метанол и суммарная реакция денитрификации представляется в виде [c.147]

    Полная очистка сточных вод достигается только при их биологической обработке в аэротенках с активным илом. В сточных водах производства метанола содержится до 0,3% метанола и других кислородных соединений углерода. [c.263]

    Биохимические методы очистки основаны на способности некоторых микроорганизмов разрушать органические вещества до двуокиси углерода, воды и других неорганических безвредных или менее вредных для жизни водоема соединений. Биологическая очистка осуществляется в специальных устройствах — аэротенках, представляющих собой длинные железобетонные резервуары, разделенные на несколько параллельных секций (чтобы можно было выключить одну из них для очистки и ремонта), по которым медленно протекает сточная вода вместе с так называемым активным илом, заселенным бактериями, грибками и другими микроорганизмами, часть которых способна разрушать органические вещества. [c.264]

    Биологическое разложение, в частности жизнедеятельность почвенных бактерий, ведет к образованию больших количеств сероводорода, аммиака, углеводородов, оксидов азота ( NaO, N0, NOj) и углерода (СО, СОг). Во всех этих случаях результаты деятельности природных источников намного превышают результаты рукотворной деятельности. Исключением в этой области является эмиссия СО (около 220-10 кг ежегодно), которая обусловлена практически полностью выхлопными газами и намного превосходит количества, созданные природными источниками, например, лесными пожарами [612, 688]. [c.20]

    Такое своеобразное различие между карбоновыми кислотами с четным и нечетным числом атомов углерода проявляется не только в температурах плавления, но отчасти и в химических, а также в биологических свойствах. Так, например, кислотй с четным числом углеродных атомов распадаются при кровоизлиянии печени до ацетона (Эмбден), в то время как нечетные — не распадаются аналогичные колебания на- [c.242]

    Из различных изотопов кислорода и азота в органической химии всегда применяются стабильные изотопы О н Ы . Для углерода известны 5 изотопов с атомными весами 10, 11, 12, 13 и 14. Изотопы и являются стабильными обычный углерод содержит 99% С и 1% С . Изотоп С удалось получить в высокой концентрации его часто применяют для изучения химических и биологических реакций. Из трех радиоактивных изотопов С , С и С первые два мало пригодны в качестве индикаторов, так как их период полураспада составляет соответственно только 8,8 секунды и 21 минуту. С , напротив, имеет период полураспада 6000 лет и поэтому очень часто применяется п изотопной технике. [c.1143]

    Бурное развитие нефтеперерабатывающей промышленности привело к накоплению огромного количества нефтяных загрязнений, вопрос об утилизации которых стоит в настоящее время очень остро. Не вызывает сомнения и то, что в природных экосистемах обязательно находятся микроорганизмы-деструкторы таких соединений, использующие эти соединения в качестве источника углерода и энергии. Несмотря на существование целого ряда физических и химических методов переработки таких ксенобиотиков, неизбежна биологическая детоксикация остатков с целью окисления наиболее токсичных углеводородов. [c.120]

    По содержанию i в углероде продукты, полненные из органических соединений, которые еще не очень давно вышли из биологического круговорота, резко отличаются от продуктов синтетически полученных из угля или кокса. Грамм свежего биологического углерода испускает в минуту в среднем 15,6 -частиц (Anderson,Lib-Ьу, 1951), в то время как ископаемый углерод практически больше пе обладает активностью. Фалтинг (Falling, 1952) показал, что измерением радиоактивности i можно не только отличать, например, природный уксус от синтетического, но и определять, причем достаточно точно, состав смеси природных и синтетических веществ. О других применениях изотопов углерода см. т. II. [c.455]

    Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрущающего действия на пассивирующие пленки сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии — защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта. [c.86]


    Фирмой Дюпон (Канада) для производства полупродуктов получения найлона — адипиновой кислоты и гексаметилен-диамина— разработан новый процесс очистки концентрированных сточных вод, богатых азотсодержащими соединениями, путем биологической нитрификации — деиитрификациц. В разработанном процессе предусматривается сочетание аэробного и анаэробного окисления. Нитрификация протекает в аэробных условиях в присутствии диоксида углерода, причем аминный и аммиачный азот биоокисляется до нитритов и нитратов. Денитрификация протекает в анаэробных условиях в среде биораз-лагаемого продукта (обычно метанола). При этом нитраты восстанавливаются до нитритов и в конечном счете до газообразного азота. Поступающие на очистку стоки имеют следующую характеристику содержание общего органического углерода — 3000 мг/л NO2 , N0 3, NH4+ в пересчете на азот соответственно 800, 90 и 230 мг/л органического азота в пересчете на азот —240 мг/л, БПК —6000 мг/л. Процесс позволяет удалять 98% органических веществ и 80—90% общего азота сточных вод. [c.105]

    На фоне общей биохимической эволюции живого вещества, существенное влияние на его состав оказывали и климато-фациальные условия. Различия, которые обычно отмечаются геохимиками в ОЬ, чаще всего связываются с гумусовым, сапропелевым или смешанным типом ОВ. Однако следует иметь в виду, что сапропелевое ОВ может быть разным в зависимости от условий обитания биоса. Это очень четко видно из исследований изотопного состава углерода однотипной биомассы и ее биологических фракций, обитающих в водоемах в разных климатических зонах (теплые и холодные моря), в разных частях бассейна, в разных условиях освещенности, солености и т.д. [c.190]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    В КГ1Т0ПЫХ асимметрический атом углерода (оп в формуле помечем звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве они нот. строены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стерео изомерией, а соответствующие изомеры— зеркальными изомерами. Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме например, для приведенных на рнс. 130 зеркальных изомеров молочной кислоты  [c.462]

    В состав колец могут входить атомы кислорода, азота и серы. Ниже, в разд. Д, вы увидете, что кольца, состоящие из пяти атомов углерода и одного атома кислорода, образуют основу одного из классов биологически активных молекул - углеводов. [c.216]

    Сбрасываемые нефтеперерабатывающими предприятиями органические вещества под действием микроорганизмов окисляются до диоксида углерода и воды. Проявляется способность самоочищения водоема. При этом расходуется кислород, содержащийся в воде водоема и поступающий туда из атмосферы. Количество кислорода в мг О2 на 1 л (мг/л), которое поглощают в процессе окисления органические вещества за определенный промежуток времени, называется биологической потребностью в кислороде—ВПК. Различают БПК5 (пятидневный) БПК20 (двадцатидневный), БПКполн (полный, когда вещество окисляется полностью). Сточные воды НПЗ до очистки имеют БПКполн 250—450 мг/л, в то время как по санитарным нормам этот показатель в воде водоема должен составлять 3—6 мг/л в зависимости от его категории. При сбросе неочищенных сточных вод концентрация имеющегося в водоеме кислорода может резко снизиться (либо он израсходуется полностью), что вызывает гибель планктона, бентоса, рыб и других организмов, потребляющих растворенный в воде кислород. [c.314]

    Биологическое поражение нефтяных масел существенно повышает их коррозионную активность по отношению к металлам, в том числе к алюминию и его сплавам, не корродирующим при контакте с маслами в обычных условиях эксплуатации. Это связано с усилением химической коррозии из-за образования в масле при жизнедеятельности микроорганизмов таких агрессивных веществ, как органические и минеральные кислоты, аммиак, свободная сера, двуокись углерода, сероводород. Может наблюдаться Также электрохимическая коррозия— на отдельных участках поверхности металла образуются колонии микроорганизмов (в виде наростов), что усиливает аэрацию, увеличивает концентрацию кислорода на этих участках и создает там-разность потенциалов. Другой вид электрохимической коррозии возникает в результате жизнедеятельности сульфатвосстанав-ливающих бактерий, под действием которых из сульфатов образуются ионы серы, реагирующие затем с металлом, образуя сульфиды. Этот процесс получил название катодной деполяризации. Коррозии способствует склонность многих микроорганизмов к разрушению [c.71]

    Существует связь между химической структурой вещества и его токсическим действием. По правилу Ричардсона, которое применимо к веществам алифатического ряда и спиртам, сила наркотического действия возрастает с увеличением числа атомов углерода в молекуле, В качестве примера можно указать, что легкие бензины менее токсичны, чем тяжелые бутиловый, амиловый и другие высшие сиирты токсичнее, чем этиловый и проииловый. По правилу разветвленных цепей наркотическое действие ослабляется с разветвлением цепи углеродных молекул. Это наблюдается среди углеводородов, являющихся изомерами, имеющих различия в структуре (иа-иример, изогеитан менее ядовит, чем геитан). По правилу кратных связей биологическая активность веществ возрастает с увеличением числа ненасыщенных связей, т, е. с увеличением неиредельностн. Так, токсичность увеличивается, например, от этана (СНз—СНз) к этилену (СН2=СН2) и ацетилену (СН = СН), [c.42]

    Биологические методы очистки почвы и воды от нефтяных за-1рязнений, основанные на применении активных микробных штаммов, проявляющих способность расти и исаользовагь в качестве источника углерода и энергии углеводороды нефти и нефгепродуктов, получили сегодня широкое развитие и применение, [c.7]

    В биологических системах универсальным донором метильных групп является сульфониевое соединение S-аденозилметионин (SAM). В свою очередь SAM синтезируется из аминокислоты метионина и другого биологически важного соединения — адеио-зинтрифосфата (АТР), высокоэнергетического соединения (форма хранения биологической энергии). Как и вообще все химические реакции, протекающие в организме, эта реакция также катализируется ферментом. Реакция термодинамически выгодна и в отсутствие белкового катализатора, однако фермент катализирует ее определенное направление. Без катализатора возможны и другие реакции, например разрыв трифосфатной цепи катализатор же связывает и ориентирует нуклеофильный атом серы таким образом, что становится возможной атака только по метиленовому атому углерода. Позже подробно обсуждается важность такого связывания и эффектов сближения сейчас следует отметить, что, хотя аденозин в составе АТР и не участвует в химическом преврап енин, он служит для узнавания АТР ферментом Фермент узнает молекулу АТР и затем связывается с ней. [c.46]

    Описанные выше превращения тиамина ясно показывают аналогию тиамина с цианид-ионом, поскольку образующийся анион сравнительно устойчив благодаря частичной делокализации отрицательного заряда атомами углерода и азота (рис. 7.12). Поскольку атом азота в тиазолиевом кольце уже имеет положительный заряд, то он, по-видимому, еще в большей степени, чем цианид-ион, стабилизирует отрицательный заряд. По этой причине его можно назвать биологическим цианидом [301]. [c.464]

    Несмотря на плохую биоразлагаемость ПХД и их производных, ведутся работы по биологическому обезвреживанию высокотоксичных ОСМ. При инкубации в культуре микроорганизмов биоразложение смесей MOHO-, ди- и тетрахлордифенилов происходит по реакции 1-го порядка. Ее скорость зависит от источника углерода, используемого для поддержания жизнедеятельности культуры. [c.362]

    Огромный интерес представляют вещества, которые образуют живую материю или используются ею. Из всех элементов именно углерод играет главную и определяющую роль в биологическом мире, пос-кэльку специфические и химические свойства невероятно сложных со-ед шений углерода обеспечивают способность биологических объетсгов быть живыми . Таким образом, органическую химию можно рассматривать как своеобразный мост от неживой природы к высшей ее форме - жизни. [c.12]

    Метод биологической рекультивации позволил ускорить процесс восстановления плодородия почв, так как не требует нанесения плодородного слоя и снижает затраты на его осуществление. Биотехнолопгческий способ, основан на применении активных штаммов почвенных микроорганизмов, которые участвуют в превращении соединений углерода, фосфора, калия и азота в усвояемую растениями форму, мобилизуя потенциальное плодородие пород, в результате чего на поверхности бесплодных грунтов создается растительно-плодородный слой в течение первого года рекультивации. [c.163]

    Стабильные и нестабильные (радиоактивные) изотопы часто применяются в органической химии. Этими изотопами элемеитоа, в особенности изотопами водорода, углерода, кислорода, азота, фосфора и т. д., пользуются при исследовательских работах в органической и биологической химии для того, чтобы охарактеризовать или, как говорят, отметить (по-английски — label) определенные атомы органических молекул и таким путем с точностью проследить судьбу этих атомов ири химических и биологических превращениях соответствующих веществ. [c.1142]

    Материалы на основе углерода занимают особое место в различных отраслях народного хозяйства благодаря сочетанию жаропрочности, механической прочности при высоких температурах, химической стойкости в агрессивных средах, фрикционным, антифрикционным, электрическим свойствам. Это единственные в природе вещества, способные увеличивать свою гфочность с возрастанием темнера туры. Сочетание прочности стали с легкостью пластмасс, непревзойденная жаростойкость, биологическая совместимость с живой материей (искусственный клапан сердца, протезы суставов и костей) все это позволяет создавать на основе углеродных материалов уникальные детали сложнейшей конфигурации, область применения которых простирается от медицины до космоса. [c.5]

    Хотя достаточно высокое значение pH внутри массы успешно способствует предотвращению анаэробному биологическому распаду, ближе к поверхности значение pH снижается в результате карбонизации и моясет начаться аэробное разложение биоразлагаю-щихся компонентов с превращением органического углеродистого вещества в двуокись углерода и воду накопленная в результате двуокись углерода может в дальнейшем преобразовывать остаточную гидроокись 1 альция в карбонат. Это действие происходит всякий раз, если пстревожить наполнитель, обработанный методом D R, т. е. он проявляет так называемый эффект самолечения. [c.246]

    Сульфонат натрия. Смесь натриевых солей алкилсульфокис-лот с алкильными остатками, содержащими 12 18 атомов углерода. Сульфонат — порошок, гигроскопичен, не горюч, не токсичен, биологически разлагаем (до 97%). Температура плавления 160 °С. Разлагается при температуре 220 -5- 230 °С. Хорошо растворим в дистиллированной воде, в жесткой воде образует муть. Слаборастворим в спирте, практически не растворим в эфире и бензоле. Водные продукты судьфоната натрия обладают высокой смачивающей способностью и хорошим моющим действием. Сульфонат натрия содержит до 60 % (вес) активного вещества. [c.263]

    Углерод в различных некристаллических формах является основным элементом химических, физических и биологических явлений и процессов. Поэтому понятен более вековой интерес к углеродсодержащим шунгитовым породам (шунгитам) Карелии, знаменитым высоким содержание аморфного углерода (по оценкам до 25х 10 тонн). Шунгиты обладают набором физикомеханических и физико-химических свойств, позволивших отнести их к перспективному углеродному сырью. Показана возможность их использования в процессах водоподготовки и водоочистки, в качестве катализатора в кислотных и кислотно-основных реакциях, многофункхщонального наполнителя полимерных композиционных материалов, в процессах выплавки кремнистых чугунов и получения карбида кремния. [c.174]

    Дигалогенкарбены внедряются по С -Н углерод-водородным связям циклических ацеталей с образованием соответствующих ди-галогенметилкетонов. Последние представляют определенный интерес в синтезе биологически активных соединений. [c.72]

    При малой доступности водоемов может быть использован биологический способ очистки, основанный на способности некоторых микроорганизмов использовать компоненты нефти в качестве источника углерода в своей жизнедеятельности. Наиболее изучены щтаммы P.seudomonas ри11с1а [24, 25]. Химическое и бактериальное окисление нефти наиболее быстро происходит при температуре воды выше 25°С при температуре 15°С данные процессы. замедляются в три раза, а при температуре 5°С — в дес. ть раз [25]. В северных морях нефть может сохраняться в течение пятидесяти лет [26]. [c.20]

    Содержание органического углерода и продуцирование двуокиси углерода при биологической рекультивации песчаного иллювиального железистогумусового подзола (слой 0-20 см) 771 [c.44]


Смотреть страницы где упоминается термин Биологические углерода: [c.408]    [c.69]    [c.48]    [c.209]    [c.249]    [c.130]    [c.184]    [c.75]    [c.76]    [c.164]    [c.362]    [c.83]    [c.35]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.839 ]




ПОИСК







© 2025 chem21.info Реклама на сайте