Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография время удерживания

    Взаимодействие каждого вещества с подвижной и неподвижной фазами является его индивидуальной характеристикой. Основным параметром, применяемым в хроматографии для целей качественного анализа, является удерживание. В газовой и жидкостной колоночной хроматографии время удерживания вещества зависит от многих факторов качества набивки ко- [c.628]


    Во всех основных видах хроматографий время удерживания и относительная величина удерживания в определенной степени зависят от температуры. [c.105]

    Аспирин и родственные ему соединения можно проанализировать при помощи жидкостной хроматографии. Времена удерживания в высокоэффективной жидкостной хроматографии воспроизводимы и их можно использовать для идентификации компонентов смесей. [c.256]

    Один из способов грубой, весьма приб."изи-тельной оценки молекулярных масс, в сущности, нам уже известен. В предыдущей главе упоминалась особенность одной из неподвижных фаз для газовой хроматографии время удерживания близких по свойствам веществ в колонке с этим сорбентом примерно пропорционально массе их молекул. Вещество А выходит на такой колонке, к примеру, на 6-й, а X (при той же температуре) — на 9-й минуте после ввода в прибор. Следовательно, молекулы X примерно в полтора раза массивнее. [c.48]

    Хроматограмма представляет собой график завнснмости величины сигнала детектора от времени. Работа детектора основана на измерении разности теплопроводности газа—носителя и компонентов смеси, которая обусловливает разность потенциалов. Эта разность усиливается, передается на записывающее устройство и фиксируется в виде ппка. Появлению каждого пика на хроматограмме соответствует определенное время, называемое временем удерживания туд и равное времени от момента ввода пробы в хроматограф до появления максимума пика ть Т2, тз соответственно. Чем больше сорбционная способность, тем больше время удерживания. [c.39]

    Уравнение (16) теории идеальной равновесной хроматографии показывает, что исправленное время удерживания компонента для различных компонентов должно различаться, что и обеспечивает газо-хроматографический анализ. [c.559]

    Таким образом, исправленное время удерживания как и удерживаемый объем связано со строением молекул. Соотношения (31), (32) для газо-жидкостной хроматографии и соответственно соотношения [c.566]

    Теплоты адсорбции определялись газохроматографическим методом [29] на хроматографе Цвет с пламенно-ионизационным детектором и стальной колонкой длиной 1 м диаметром 4 мм. Скорость газа-носителя аргона, поддерживалась постоянной и была равна 45 мл/мин. Температурный интервал определения времени удерживания был в пределах от 180—298°С. В качестве адсорбента использовался аэросилогель [27], прокаленный при температуре 300, 500 и 900° в течение 5—6 ч. Время удерживания при одинаковых температурах и равных скоростях газа-носителя хорошо воспроизводилось и не зависело от величины пробы. Теплоты адсорбции рассчитаны согласно [28]. [c.149]


    В газовой хроматографии с линейным программированием температуры время удерживания равно повышению температуры, деленному на скорость нагрева. Поэтому удерживаемый объем л,п равен [c.185]

    Для выполнения качественного анализа смеси необходимо откалибровать хроматограф, т. е. снять хроматограммы стандартных веществ, которые могут содержаться в анализируемой пробе, и определить объем вводимой пробы и время удерживания индивидуальных компонентов. [c.356]

    Если известны удерживаемые объемы или соответственно времена удерживания веществ, их можно идентифицировать методом газовой хроматографии (качественный анализ). Для гомологического ряда органических соединений, например парафинов, спиртов, сложных эфиров и т. д., установлена линейная зависимость между логарифмами значений удерживаемых объемов и числом групп СНг в молекулах, что также дает возможность провести качественный анализ веществ внутри каждого гомологического ряда. [c.245]

    Как известно, для адсорбентов одной и той же природы время удерживания пропорционально поверхности. Простой способ определения удельной поверхности адсорбента газо-адсорбционной хроматографией предложила Эрика Кремер. Для одного адсорбента [c.200]

    Уравнение материального баланса в равновесной теории. Абсолютная и относительная скорости перемещения вещества вдоль слоя адсорбента или растворителя в хроматографической колонке связь этих скоростей с константой и с изотермой распределения адсорбции или растворимости. Идеальная равновесная хроматография. Влияние формы изотермы адсорбции или растворимости на форму задней и передней границ хроматографической полосы в рамках равновесной теории. Время удерживания и удерживаемый объем, их связь с константой равновесия, зависимость от температуры колонки, связь с теплотой и энтропией адсорбции или растворения. Приведение удерживаемого объема к нулевому перепаду давления в колонке и к малой величине пробы. [c.296]

    В газовой хроматографии важно поддерживать постоянную температуру в течение всего анализа, так как время удерживания компонентов анализируемой смеси зависит от температуры. Колебания температуры колонки не должны превышать 0,5°С. Поэтому хроматографическую колонку помещают в термостат. [c.43]

    Отсутствие зернистого носителя дает возможность увеличить длину капиллярной колонки от нескольких десятков до нескольких сотен метров. Столь значительное удлинение колонки резко улучшает разделение анализируемой смеси и позволяет разделять вещества с очень близкими коэффициентами Генри, например орто-, мета- и лара-изомеры, изотопные соединения. Уменьшение диаметра колонки до 0,02 см позволяет работать с очень малыми дозами (порядка 0,1—10 мкг), т. е. капиллярная хроматография является тонким микрометодом анализа. При малых дозах и соответственно малых количествах жидкой фазы на единицу объема капиллярной колонки объемы удерживания и время удерживания компонентов значительно меньше, чем в газо-жидкостной хроматографии в заполненных колонках. Это намного сокращает время анализа, а также позволяет работать при более низких температурах. Объемная скорость потока газа-носителя очень мала, что очень важно при использовании дорогостоящих газов-носителей, таких, например, как гелий и аргон. Отметим, однако, что указанные достоинства в полной мере проявляются лишь при высокочувствительном и неинерционном детекторе. Наилучшим оказался пламенно-ионизационный детектор. [c.117]

    Удерживаемый объем Уг и время удерживания /г, как уже говорилось ранее, являются качественными характеристиками хроматографируемых веществ в определенных условиях проведения опыта. Качественный анализ основан на измерении и сопоставлении этих величин. В современной газовой хроматографии существует несколько способов идентификации компонентов в сложной смеси. [c.214]

    Кроме площади пиков при проведении количественного анализа в хроматографии используют измерение высоты пиков (в случае очень узких пиков на хроматограмме), а также произведение высоты ника на объем или время удерживания вещества, или произведение высоты пика на расстояние удерживания I,, пропорциональное Уг или 1г. [c.224]

    Эффективность разделения в газовой хроматографии зависит от скорости миграции молекул исследуемого соединения через колонку и от распределения компонента между неподвижной и подвижной фазами, т. е. от наклона изотермы или константы распределения. Количественным выражением первого явления служит время удерживания (время элюирования) tr или удерживаемый объем Уг, второго явления — число теоретических тарелок N (безразмерная величина) или высота, эквивалентная теоретической тарелке, Н, мм. Кроме того, большое внимание уделяется изучению факторов и явлений, непосредственно воздействующих на [c.226]


    Все это привело к некоторому компромиссному решению при создании жидкостных хроматографов, которое было достигнуто путем сохранения достаточно высокой удельной поверхности адсорбента при уменьшении размеров его гранул до 2—10 мкм. Уменьшение размера гранул, сокращая пути диффузии, влечет за собой, однако, уменьшение проницаемости колонны, В результате этого увеличиваются времена удерживания, а следовательно, усиливается размывание пиков. Для сокращения времен удерживания в набитых такими адсорбентами колоннах применяют значительное повышение давления у входа в колонну. В зависимости от вязкости элюента это давление составляет обычно от единиц до немногих десятков мегапаскалей, обеспечивая достаточную для аналитических целей скорость потока элюента через колонну. Так как жидкий элюент можно считать практически несжимаемым, то при постоянной скорости потока ш удерживаемые объемы получаются умножением соответствующих исправленных времен удерживания на ш. [c.284]

    Разделение олигомеров и полимеров методом жидкостной хроматографии на твердых адсорбентах может быть основано на двух главных эффектах адсорбционном и диффузионном. В первом случае время удерживания определяется в основном энергиями адсорбционного взаимодействия макромолекул и молекул элюента с поверхностью твердого тела и между собой (как и в адсорбционной жидкостной хроматографии молекул, см. лекции 16 и 17). Во втором случае время выхода вещества зависит в основном от гео- [c.337]

    При плоскостной хроматографии вещество регистрируют непосредственно на пластинке с тонким слоем неподвижной фазы или на бумаге. При этом в качестве количественной характеристики поведения компонента принято использовать отношение скоростей перемещения компонента и растворителя, которое легко определяется как отношение расстояния, пройденного компонентом от точки старта (точки нанесения пятна или полосы разделяемой смеси), к расстоянию, пройденному за то же время фронтом растворителя. Это отношение обозначают Ri и так же, как время удерживания, широко используют для обнаружения веществ в анализируемых смесях. Принято считать, что если в трех достаточно сильно различающихся по своим характеристикам системах значения Rf некоторого вещества, подвергающегося анализу, совпадают со значениями для вещества известного строения, то можно считать эти вещества идентичными, т. е, фактически приписать анализируемому веществу определенное строение. Эту процедуру, конечно, нельзя рассматривать как установление строения анализируемого вещества, так как она основана на сопоставлении с веществом уже ранее установленного строения. Обычно в этом случае говорят об идентификации вещества по значениям 7 /. [c.342]

    С результатами спектрального анализа согласуются и данные, полученные при помощи хроматографии. Времена удерживания последовательно введенных в трикрезилфосфатную колонку а-метилтетрагидрофурана (т. кип. 80° С) и вещества, собранного после препаративной колонки, совпали и были равны 14 55". [c.259]

    Рис. V.1 показывает, что полоса продукта значительно отличается по форме от полосы вещества, получаемого при газоадсорбционной хроматографии. Время удерживания полосы продукта целесообразно определять в этом случае по выходу центра тяжести полосы ц. Формулы для расчета tц и дисперсии полосы продукта можно получить описанным выше методом моментов. В самом деле, используя преобразование Лапласа [c.198]

    Структуру макромолекул можно установить, исследуя растворы полученных полимеров [5] методом гель-прони-кающей хроматографии. Время удерживания этих полимеров значительно больше, чем соответствующих линейных гомополимеров. Это показывает, что молекулярный объем, обусловливающий, как известно, возможность хроматографического разделения, для звездообразных полимеров значительно меньше, чем для линейных. Дополнительное подтверждение звездообразной структуры, полутенное методом хроматографического анализа, связано с полидисперсностью полимеров образцы полимера характеризуются низкой полидисперсностью, так как молекулярный объем почти не зависит от числа ответ- [c.40]

    В главе XVIII показано, что теплота адсорбции зависит от геометрической и электронной структуры молекулы адсорбата и адсорбента. Следовательно, изменяя природу адсорбента (или неподвижной жидкости в газо-жидкостной хроматографии), мояс-но изменить времена удерживания и даже последовательность выхода компонентов. Для -алканов теплота адсорбции является линейной функцией числа атомов углерода (п) в молекуле (см. стр. 492, 493), поэтому при одной и той же температуре колонки [c.564]

    Анализ выполняют на колонке длиной 1-1,5 м и диаметром 3 мм. Хроматографическую колонку предварительно промывают хлороформом и высуишвают, затем заполняют носителем с неподвижной жидкой фазой. Носитель уплотняют при помощи вибратора. Массу носителя с неподвижной жидкой фазой, загруженного в хроматографическую колонку, определяют взвешиванием колонки до и после наполнения. Остатки хлороформа из носителя удаляют, продувая колонку азотом со скоростью 6 л/ч при 120 °С в течение 2 ч. Затем определяют время удерживания стандартов, т. е. время от момента ввода пробы до максимума пика данного стандарта на хроматографе. В качестве стандартов используется смесь нормальных углеводородов С —С9 и метилового спирта в соотношении 1 1. Пробу смеси нормальных углеводородов Се—С9 и метилового спирта в количестве 1 мкл вводят в испаритель хроматографа, фиксируя ввод пробы и выход максимума пика каждого компонента [c.156]

    Высокоэффективная жидкостная хроматография в нормальнофазовом варианте (полярный сорбент — неполярный элюент) рекомендуется для разделения изомеров. Изомеры имеют различное время удерживания на силикагеле благодаря разному расположению полярных групп. Идентификацию пиков на хроматограмме проводят методом добавок индивидуальных изомеров. Количественное определение одного из изомеров проводят методом абсолютной калибровки. [c.206]

    Разделение бензола, нафталина и фенантрена методом жидкостной хроматографии — типичный пример разделения высококипящих органических веществ, трудно разделяемых методом газовой хроматографии. Разделение методом ВЭЖХ проходит за 5 мин, время удерживания возрастает с увеличением числа ароматических колец. Ароматические вещества хорошо детектируются при А, = 254 нм. [c.209]

    V — коэффициент извлечения в препаративной хроматографии П — площадь хроматографического пика р — плотность жидкой фазы р,, — плотность газа 2/1 — показатель асимметрии а — ширина зоны, занимаемая веществом на сорбенте Сет —среднее стандартное отклонение т — время блуждания молекулы Тд — время удерживания Тд — постоянная времени детектора Ро — пороговая чувствительность г з — степень разделения ш — объемная скорость газа-носителя [c.6]

    Если длина колонки I, то со = СИг, где — время прохождения хроматографируемым веществом всей колонки (так называемое время удерживания). Тогда, произведя соответствующие преобразования, получим для газоадсорбционной хроматографии [c.39]

    В хроматографии функциями отклика являются высота теоретической тарелки Н, общий критерий разделения К или Кв, время t, затрачиваемое на разделение (обычно это г —время удерживания наиболее сильно сорбирующегося компонента). [c.149]

    Оценить качество (эффективность) разделения для любого вида хроматографии можно с помощью таких характеристик, как время удерживания /уд и объем удерживания У уд. Временем удерживания называют время от момента ввода пробы до момента появления на хроматограмме максимума пика. Время удерживания тем больше, чем сильнее сорбируется данный компонент. Объем удерживания — это объем элюента, прошедпжй через слой адсорбента за время удерживания. Связь между временем и объемом удерживания дает выражение [c.350]

    Теплоты адсорбции катионированными цеолитами, особенно лолярных молекул, велики, поэтому соответствующие изотермы адсорбции поднимаются при обычной температуре очень круто. Константы Генри так велики, что их определение методом газовой хроматографии затруднительно, так как время удерживания в колонне велико и пики сильно размываются. Это же мешает газохроматографическому разделению на цеолитах многих веществ за исключением легких газов и паров. Поэтому здесь будут рассмотрены результаты исследований адсорбции цеолитами, полученные главным образом статическими методами. Этими методами адсорбция изучается не только при малых, но и средних, а иногда и больших заполнениях полостей цеолита. Следует однако иметь в виду, что при определении константы Генри и начальных [c.32]

    Таким образом, в условиях равновесной хроматографии и при практически не адсорбирующемся И не сильно сжатом газе-носителе удерживаемый объем малой (нулевой) дозы адсорбата представляет собой константу Генри адсорбционного равновесия. Так как современные детекторы (пламенно-ионизационный, электроноза-хватный, масс-спектрометриче ский) обладают весьма высокой чувствитель-ностью (на уровне пикограммов), метод газовой хроматографии позволяет непосредственно измерить константу Генри. На рис. 7.3 показано, что время удерживания малых доз прак- -- [c.137]

    Соответственно этому на хроматограмме время удерживания с ростом дозы возрастает (рис. 7.4, б). Из рис. 7.4, а, б видно, что растянутые края пиков сливаются в общую кривую, а противоположные края почти вертикальны. Это характерно для равновесной хроматографии. В этом случае изотермы можно вычислить по растянутому краю пика паибольшей дозы (в пределах небольших доз, до перегибов на изотерме адсорбции). [c.138]


Смотреть страницы где упоминается термин Хроматография время удерживания: [c.381]    [c.77]    [c.63]    [c.544]    [c.69]    [c.523]    [c.21]    [c.75]    [c.82]    [c.299]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.5 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.5 ]

Инструментальные методы химического анализа (1989) -- [ c.392 , c.418 ]

Техника лабораторных работ (1982) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Время удерживания в газовой хроматографии

Время удерживания в жидкостной хроматографии

Удерживание

Удерживание время

Хроматография удерживания



© 2025 chem21.info Реклама на сайте