Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы энергия разрыва связей

    Ординарная алифатическая связь между двумя углеродными атомами примерно в 1,5 раза слабее двойной и в 2 раза слабее тройной связи, что согласуется с данными исследований электрической структуры атомов и молекул. Энергия ординарных связей в прямой и боковой цепях меньше, чем в цикле гидроароматических углеводородов, и еще меньше, чем в цикле ароматических. При термическом воздействии прочность молекулы, в составе которой имеются фенильные группы, снижается по мере усложнения. Разрыв такой молекулы происходит прежде всего по месту ординарной углеродной связи. Энергия разрыва -по связи С—С, находящейся в бета-положении от двойной связи или от ароматических заместителей, ниже, чем в альфа-положе-нии. Чем больше межатомные расстояния и несимметричнее структура, тем меньше прочность молекулы и тем вероятнее ее [c.37]


    Место разрыва в молекуле метанового углеводорода определяется энергиями диссоциаций связей, а также температурой и давлением. При умеренных температурах 400—500° разрыв происходит ближе к середине молекулы. Это подтверждается термодинамическими расчетами. Например, для реакции крекинга декана  [c.119]

    Учитывая, что разрыв связи между атомами водорода в мо,ле-куле требует затраты большого количества энергии, диссоциация молекулы водорода должна сопровождаться образованием двух прочных связей между атомами меди и водо )ода [см. уравнение (14)]. Если это действительно имеет место, то учет распределения [c.188]

    Превращение молекул, если не вдаваться в детальный механизм реакции, связано с перераспределением химических связей. Одни связи в молекулах в ходе реакции разрываются, а другие образуются. На разрущении связей энергия затрачивается, а при образовании новых энергия выделяется. Энергия, которую необходимо затратить на разрыв связей в молекуле на отдельные атомы (или атом и группу атомов) и на удаление этих частей на расстояние, где их взаимодействие равно нулю, называется энергией связи. Ее можно рассчитать по закону Гесса. Так, для расчета энергии связей в молекуле воды [c.70]

    Разделение ядерных изомеров мо>1<но проводить различными путями, но во всех случаях используют отрыв атома, претерпевающего изомерный переход, от материнской молекулы. Для брома энергия отдачи -[-кванта изомерного перехода недостаточна, чтобы заставить атом при изомерном переходе оторваться от материнской молекулы, однако разрыв связи углерод—бром [c.305]

    Первичной реакцией термораспада полимерной молекулы является разрыв связей с наиболее низкой энергией активации. Это можно продемонстрировать на примере молекулы полистирола (у связей указаны энергии активации в кДж/моль) [43]  [c.44]

    В молекуле углеводорода связь С—С является более слабой, чем связь С—Н, однако в большинстве случаев атака кислорода направляется на связь С—Н. Н, Н. Семенов объясняет это тем, что в молекуле углеводорода связь С—С защищена атомами водорода и чтобы их раздвинуть, требуется затрата дополнительной энергии (порядка 10—15 ккал). В таком случае разрыв связи С—Н становится энергетически более вероятным. [c.43]

    Р с ш с н II е. Кислород более электроотрицательный элемент, чем сера. Поэтому между молекулами воды возникают более прочные водородные связи, чем между молекулами сероводорода , Разрыв этих связен, необходимый для перехода воды в газообразное состояние, требует значительной затраты энергии, что и приводит к аномальному повышению температуры кипения воды. [c.71]


    Какое влияние на условия равновесия химической реакции оказывают разрыв связей и повышение неупорядоченности системы Если бы единственным заслуживающим внимания фактором была только энергия связей, какой была бы константа равновесия для диссоциации молекул водорода на атомы Если бы единственным важным фактором была только энтропия, какой была бы константа равновесия для диссоциации водорода Используя свои ответы на эти вопросы и соотношение между С, Я и 5, объясните, почему диссоциация газообразного водорода сильнее выражена при высоких температурах. [c.114]

    В других системах процесс растворения может требовать затраты энергии, т. е. при растворении поглощается теплота. Это происходит, например, при внедрении неполярных молекул в среду ассоциированного растворителя (что вызывает "уменьшение его степени ассоциации) или при растворении ассоциированного компонента в неполярном растворителе (что требует затраты энергии на разрыв связей между молекулами в комплексе). В таких случаях тепловое движение может быть недостаточным для полного смещения. [c.329]

    При образовании соединений между частицами компонентов растворимость повышается. Весьма часто энергия, необходимая для разрыва связей между частицами вещества при его растворении, компенсируется энергией, выделяющейся при образовании соединений между частицами растворяемого вещества и молекулами растворителя. Это играет важнейшую роль, например, при растворении сильных электролитов в воде. Именно за счет энергии, выделяющейся прн гидратации ионов, и происходит разрыв связей между ионами при растворении кристалла с ионной решеткой. Наоборот, необходимость дополнительной затраты энергии, например, на разрушение комплексов в случае ассоциированного растворителя или другие подобные процессы всегда связана с уменьшением растворимости. При одновременном действии этих факторов суммарное влияние их на растворимость может быть весьма сложным. [c.330]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Свободные радикалы в некоторых случаях могут образоваться 3 реакциях между двумя молекулами. Этот процесс иногда оказывается энергетически более выгодным, чем прямой разрыв связи и молекулах, так как затрата энергии на разрыв одной или двух химических связей частично компенсируется выигрышем энергии в результате образования новой химической связи. Например, образование метильных радикалов по реакции  [c.19]

    В большинстве случаев разрыв молекулы по какой-либо связи < образованием двух свободных радикалов имеет энергию активации, равную энергии разрыва связи, т. е. идет без активационного барьера. Константы скорости таких процессов равны  [c.105]

    Пример 2. Разрыв связи в молекуле хлора произошел под воздействием излучения с длиной волны 5,01-10 м. Вычислите энергию разрыва связи 1) в молекуле СЬ 2) в 1 моль С12. [c.27]

    Образование химической связи между атомами всегда сопровождается выделением энергии. И наоборот, на разрыв связи требуется затратить энергию. Поэтому реакции образования молекул из атомов всегда экзотер-мичны, а реакции диссоциации молекул на атомы — эндо-термичны. [c.209]

    Выделение и поглощение тепловой энергии объясняется разрывом связей в растворяемом веществе (распад на ионы) и образованием новых связей между ионами и молекулами растворителя (процесс сольватации). Разрыв связей требует затраты энергии, а при образовании связей энергия выделяется. Алгебраическая сумма поглощаемой и выделяемой энергии дает суммарный тепловой эффект растворения. [c.120]

    Основные химические превращения предельных углеводородов идут только при сообщении им достаточно высокой энергии (за счет нагревания или УФ-облучения). При этом может произойти или разрыв связи С — Не последующей заменой атома водорода на другой атом или группу атомов, или же разрыв молекулы по связи С — С. Несмотря на то что энергии этих связей равны соответственно 376,8—410,3 и 314—368,4 кДж/моль , разрыв предпочтительнее идет по связи С — Н. Это связано с большей доступностью связи С —Н для атаки со стороны химических реагентов. [c.51]


    Важнейшей характеристикой химической связи является энергия, определяющая ее прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна величине энергии диссоциации молекул на атомы. Так, энергия диссоциации О, а следовательно, и энергия связи Е в молекуле На составляет 435 кдж моль. В молекуле фтора Ра она равна 151 кдж моль, а в молекуле азота N2 940 кдж моль. Для многоатомных молекул типа АВ средняя энергия связи Еав равна 1/га части энергии диссоциации соединения на атомы  [c.56]

    В результате энергия активации (168 кдж) оказывается меньше, чем энергия, необходимая для полного разрыва связей в исходных молекулах (571 кдж). Иными словами, путь реакции через образование активного комплекса энергетически более выгоден, чем путь через полный разрыв связей вступающих в реакцию молекул. Поэтому-то подавляющее большинство реакций и проходит через образование промежуточных активных комплексов. Таким образом, энергия активации — это энергия, необходимая для превращения реагирующих веществ в состояние активного комплекса. [c.214]

    Первая стадия процесса требует затраты энергии на разрыв связей между атомами галогена в молекуле мерой этих энергетических затрат может служить энтальпия диссоциации молекул галогена. У хлора, состоящего из более прочных молекул, энтальпия диссоциации в расчете на 1 моль атомов галогена (121,5 кДж/моль) значительно выше, чем у фтора (79,5 кДж/моль). [c.481]

    При поглощении молекулой АВ кванта света (фотона) получается возбужденная молекула АВ, которая характеризуется увеличенной энергией электронов. Возбужденная молекула может претерпевать мономолекулярные превращения (в частности, разрыв связи с образованием радикалов, которые вступают в дальнейшие реакции) или вступать в реакции с другими невозбужденными молекулами. Кроме того, возбужденные молекулы могут участвовать в целом ряде физических процессов. [c.288]

    Адсорбция органического вещества на незаряженной поверхности электрода помимо эффекта выжимания определяется также энергетическими эффектами, связанными с вытеснением адсорбированных молекул растворителя (воды) молекулами органического вещества. При этом происходит разрыв связей металл — вода и образование связей металл — органическая молекула. Если энергии, которые характеризуют эти связи, обозначить соответственно АСм-п и ДСм-л, то при достаточно малых Дст на границе водный раствор/воздух [c.41]

    Постараемся убедиться в возможности протекания этих стадий, определив энергию, необходимую для разрыва связей. Это окажет нам помощь, поскольку в отсутствие каких-либо внешних воздействий энергия, нужная для разрыва связей, может быть получена только вследствие столкновений, обусловленных обычным тепловым движением молекул. При температурах ниже 100° одно только тепловое возбуждение лишь в очень редких случаях служит источником энергии, достаточной для того, чтобы разрушить сколько-нибудь значительное число связей, более прочных, чем 30—35 ккал1молъ. Следовательно, можно отклонить как неверную любую стадию, в том числе и реакции диссоциации (1) и (2), если АЯ для разрыва этих связей больше 30—35 ккал1молъ. В отношении реакции (1) вопрос может быть решен, основываясь на энергии связи С1 — С1 (см. табл. 3-5), которая составляет 58,0 ккал и, очевидно, слишком велика для того, чтобы сделать возможным разрыв этой связи в результате теплового возбуждения при температурах до 100°. Для реакции (2), при которой происходит разрыв связи С — Н метана, использование значения энергии С — Н-связи, приведенного в табл. 3-5 (98,7 ккал), нецелесообразно, поскольку эта энергия составляет одну четвертую от энергии, требуемой для разрыва всех четырех связей С — И (см. стр. 79). Разумнее использовать энергии диссоциации связей, приведенные в табл. 3-7, поскольку они представляют собой энергии, необходимые для разрыва только одной конкретной связи в многоатомной молекуле. Энергия диссоциации связи в метане оказывается равной 101 ккал при 0°К или 102 ккал при 25°С это, разумеется, означает, что связи С — Н в метане слишком прочны для того, чтобы они могли разорваться в соответствии со схемой реакции (2) при 100° или ниже. Теперь должно быть ясно, почему смесь метана и хлора не реагирует в темноте при умеренных температурах. [c.88]

    Важнейшей характеристикой химической связи является энергия, определяющая ее прочность. Мерой прочности связи может слу- ить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна величинеэнергии диссоциации моле пул на атомы. Так, энергия диссоциации О, а следовательно, иэнергия [c.42]

    Лишь в редких случаях молекулы исходного вещества реагируют непосредственно. Примером такой непосредственной реакции может служить реакция распада Иодистого водорода. При столкновении двух молекул иодистого водорода, обладающих достаточной энергией и соответственно взаимно ориенти рованиых, происходит разрыв связей Н—J и возникновение новых связей между атомами водорода и иода с образованием молекулярного водорода и иода. Примером реакций, для которых известны все элементарные процессы, т. е все промежуточные химические реакции, могут служить реакции между парами щелочных металлов и галогенов (так называемые ре-акции в разреженном пламени, см. гл. IV, 8). [c.60]

    Теплоемкость жидкой воды примерно в 2 раза преросходит теплоемкость льда прн 0°С они равны соответственно 18,16 и 9,11 кал/град моль. Такого большого различия теплоемкостей не наблюдается для других веществ. Причина этого заключается в том, что при повышении температуры жидкой воды энергия затрачивается не только на обычное усиление теплового движения частиц, но также еще и на указанный выше разрыв связей между молекулами. Этим же объясняется и наблюдаемая наибольшая плотность воды при 4,0° С (точнее при 3,98 С). Это становится понятным, если учесть, что с повышением температуры уменьшается доля молекул, связанных между собой водородными свя-зями. - [c.167]

    Влияние среды на кинетику реакций с участием нонов. Насколько велика роль среды, в которой протекает ионная реакция, можно видеть из следующего примера. Распад молекулы НС1 в газовой фазе на атомы водорода и хлора требует затраты тепла 103 ккал/моль, а распад на ионы Н и С — 330 ккал/моль, поэтому раопад на ионы неосуществим. При растворении же НС1 в воде легко идет диссоциация НС1 на ионы. Затраты энергии на разрыв связи Н —С1" компенсируются в этом случае взаимодействием ионов с молекулами воды, и из значения энергии разрыва связи видно, что взаимодействие это очень сильное. [c.162]

    Деформации могут быть настолько сильными, что молекулы становятся способными разрывать свяки и переходить в атомарное состояние. Было доказано экспериментально, что водород, азот и другие двухатомные газы под действием силового поля на поверхности металла переходят в атомарное состояние окончательным подтверждением этого явилась конверсия л-водорода в о-водород (стр. 133). Разрыв связи является предельным случаем деформации, но часто последняя столь далеко не идет и ограничивается разрыхлением связей. Это делает молекулы гораздо более реакционноспособными, склонными к перестройке связей и к образованию новых соединений при затрате значительно меньшей энергии активации. [c.126]

    Механизм взаимодействия двух валентно-насыщенных молекул должен включать в себя разрыв или значительное расслабление, сравнимое по энергии с разрывом, но крайней мере, двух валентных связей. Предположим, что взаимодействие молекул углеводорода и кнслорода приводит К образованию органической перекиси. При такой реакции, следовательно, должен произойти разрыв связи С—П в углеводороде и одной из двух связей в молекуле 0 = 0. Возникшая частица —О—О— сможет теперь внедриться между атомами С и Н углеводорода с образованием нерекиси. Разрыв одной связи в молекуле кислорода требует около 80 ккал1моль, разрыв С—Н-связи в углеводороде — от 80 до 100 ккал молъ [c.43]

    Энергия Е2=19 ккал/моль — это избыток энергии, остающейся после израсходования части энергии образования 2НС1 на разрыв связей О — Н и 81 — С1. Оксихлорид кремния — продукт этой реакции гидролизуется, хемосорбируя при этом молекулы воды с выделением энергии Ез  [c.214]

    Энергия водородной связи значительно меньше энергии обычной ковалентной связи (150—400 кДж/моль). Она равна примерно 8 кДж/моль у соединений азота и достигает около 40 кДж/моль у соединений фтора. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т. е. их объединение в димеры (удвоенные молекулы) или полимеры, которые в ряде с.пучаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар. Именно ассоциация молекул, затрудняющая отрыв их друг от друга, и служит причиной аномально высоких температур плавления и кипения таких веществ, как фтороводород, вода, аммиак. Вода, в отсутствие водородных связей, до.лжна была бы кипеть при температуре около -66 °С, а кипит при -ЬЮО °С. Только при кипении происходит разрыв всех водородных связей в воде. [c.157]

    Газообразное топливо. По величине теплотворной способности все виды твердого топлива и нефть уступают природному газу. Высокая калорийность газообразного топлива обусловлена тем, что при его сгорании не затрачивается энергия на разрыв связей между атомамп углерода, как в твердом топливе или в больших молекулах углеводородов нефти. Кроме того, газообразное топливо полностью смешивается с воздухом, так что при его сжигании требуется лишь очень небольшой избыток кислорода по сравнению с теоретической величиной. Это снижает потери теплоты на нагрев избытка кислорода (воздуха). Газ можно предварительно нагревать, благодаря чему повышается температура пламени. Его удобно транспортировать на большие расстояния, пользуясь газопроводами. [c.653]

    Рассмотрим сначала двухатомные молекулы, состоящие из одинаковых атомов, например Н.,, Ог, N2, I2 и т. д. Стандартный тепловой эффект реакции распада таких молекул на два атома, равный взятому с обратным знаком стандартному тепловому эффекту образовання таких молекул из атомов, эквивалентен энергии, затрачиваемой на разрыв связей Н — Н, [c.81]


Смотреть страницы где упоминается термин Молекулы энергия разрыва связей: [c.106]    [c.88]    [c.93]    [c.13]    [c.134]    [c.448]    [c.122]    [c.19]    [c.51]    [c.44]    [c.15]    [c.200]    [c.328]    [c.362]    [c.283]   
Краткий химический справочник Издание 2 (1978) -- [ c.35 , c.41 ]

Краткий химический справочник (1977) -- [ c.35 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Величины энергии разрыва связей в молекулах углеводородов

Молекулы связь

Перекись водорода. Динамика многоатомных молекул. Молекулярная энергия, ее распределение по отдельным химическим связям, работа разрыва связи. Гетерогенные и гомогенные каталитические реакции распада молекул перекиси водорода

Разрыв связей

СОД Ё РЖАНИ ё Энергии разрыва связей Таблица. 1. Энергии диссоциации двухатомных молекул

Связь связь с энергией

Связь энергия Энергия связи

Энергии разрыва связей Энергии диссоциации двухатомных молекул

Энергии разрыва связей в молекулах и радикалах

Энергии разрыва связей в молекулах и радикалах неорганических соединений

Энергии разрыва связей в молекулах и радикалах органических соединений

Энергии разрыва связей в неорганических молекулах и радикалах

Энергии разрыва связей в органических молекулах и радикалах

Энергия молекул

Энергия разрыва связей (энергия диссоциации) газообразных молекул при 0 К в основном состоянии

Энергия разрыва связи

Энергия разрыва химических связей в молекулах и радикаСвойства простых веществ и неорганических соединений

Энергия связи



© 2025 chem21.info Реклама на сайте