Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы открытия обнаружения в растворах

    Очень чувствительны люминесцентные качественные реакции, когда добавление некоторых органических реагентов к раствору неорганических веществ вызывает яркую люминесценцию. Например, интенсивную люминесценцию вызывает добавление салициловой кислоты к раствору соли цинка, что может быть использовано для его качественного открытия. Для обнаружения лития и алюминия люминесцентным методом предложен 8-оксихинолин, для открытия бериллия, циркония и других элементов используют морин и т. д. Качественный люминесцентный анализ основан на способности исследуемого вещества в соответствующих условиях люминесцировать или, реже, гасить люминесценцию. Возникновение или исчезновение люминесценции обычно наблюдается визуально. [c.111]


    Совершенно нет необходимости выделять открываемые элементы в чистом виде, чтобы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа представляет серьезные трудности. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях. Так, например, для открытия серы в сульфиде железа (II) к пробе исследуемого вещества добавляют соляную кислоту. При этом сульфид железа (II) растворяется и появляется запах сероводорода, образующегося в результате реакции  [c.140]

    Метод дробного анализа детально разработан Н. А. Тананае-вым. Метод заключается в том, что отдельные небольшие пробы исследуемого раствора обрабатывают такими реактивами (или смесями нескольких реактивов), чтобы из раствора осадить все ионы, мешающие открытию искомых ионов. Выпавший осадок отфильтровывают и в фильтрате открывают искомые ионы при помощи характерных реакций. При этом порядок обнаружения катионов или анионов не имеет особого значения. При дробном методе анализа в первую очередь используют высокочувствительные специфические реактивы, позволяющие открывать данный ион в присутствии других. Такой метод не требует много времени и позволяет открывать те или иные ионы, минуя длительные операции последовательного отделения одних ионов от других. Дробный анализ дает возможность быстро определять ограниченное число (от одного до пяти) ионов, содержащихся в смеси, состав которой приблизительно известен. В этом случае нет необходимости в полном качественном анализе исследуемого образца, требуется лишь установить наличие или отсутствие в нем определенных компонентов. [c.197]

    Систематические методы открытия анионов применяют для исследования несложных смесей. Для систематического анализа более сложных смесей анионов число последовательно проводимых операций сильно возрастает, В связи с этим воз а тает степень загрязнения анализируемого раствора посторонними примесями, которые вносятся при добавлении все новых реактивов. Вследствие этого обнаружение анионов к концу анализа становится весьма затруднительным. [c.359]

    Предел обнаружения в качественном анализе традиционно называли открываемым минимумом.. В настоящее время в качественном анализе используется большое число реагентов и частных реакций с низкими пределами обнаружения. Обычно для открытия ионов применяют реакции с пределом обнаружения 10 г (0,1 мкг) в 1 мл раствора. Физические методы позволяют открыть элементы в твердых образцах с пределом обнаружения менее 10г. [c.73]


    Ферроцианид калия в I—2 N НС1 осаждает из растворов солей галлия белый осадок [494, 1018, 1021, 1051]. В нейтральном растворе при добавлении избытка осадителя осадок растворяется. Растворяется он также в щелочах и в кипящей соляной кислоте, из которой, однако, вновь выделяется после охлаждения в течение нескольких часов [1177]. Часто наблюдаемое светло-синее окрашивание осадка объясняется следами солей Ре + [814]. Открываемый минимум 20 мкг Са/мл [687, 1246]. Предельное разбавление 1 (2-10 ) [1018, 1021, 1051]. Реакции мешают нитрат-ионы [687] и катионы, образующие осадки с реагентом, большинство из которых, правда, растворяется в соляной кислоте. Метод может быть использован для открытия галлия в сфалерите [1246] в присутствии 2п, Сс1, Ре, Мп, РЬ, Hg, 8п, 1п Си, Со, N1, Mg, Са не мешают обнаружению галлия. [c.43]

    Гидрофобизация бумаги осуществлялась также путем пропитывания смесью триглицеридов растительных масел [10, 11], силиконом [12—14], нафталином [15], раствором алюмокалиевых квасцов [16], парафином [16, 17], керосином [18], парафиновым маслом [19, 20] и т. д. Для обнаружения кислот пользовались главным образом реакциями карбоксильной группы (получение металлических солей, образующих окрашенные сульфиды или феррицианиды изменение окраски щелочно-кислотных индикато-ро в), или реакциями окисления по месту двойных связей (образование МпОг при окислении перманганатом, открытие образующихся после озонирования альдегидов реактивом Шиффа). Главным недостатком, присущим этой группе методов, является трудность обнаружения пятен без предварительного удаления неподвижной фазы. [c.347]

    Метод отличается высокой чувствительностью, и его можно применять для открытия подавляющего большинства катионов. В частности, флуоресцентным методом можно открыть серебро, таллий, ртуть, свинец, кадмий, висмут, мышьяк, олово, теллур, ванадий, цирконий и др. Так, например, теллур может быть обнаружен по исчезновению красной флуоресценции родамина в нейтральном или кислом растворе. Открываемый минимум [c.125]

    Идентификация промежуточных продуктов радиолиза воды и водных растворов проводилась главным образом методами оптической спектроскопии. Интересные данные о свойствах заряженных частиц, возникаюш их при радиолизе воды, можно получить, измеряя изменение электропроводности воды сразу же после подачи импульса. Хотя открытие гидратированного электрона по полосе оптического поглош,ения в видимой области спектра почти не вызывает сомнений, все же окончательным доказательством его суш ествования явилось бы обнаружение кратковременного возрастания электропроводности дезаэрированной воды после прохождения импульса длительностью 10 сек.  [c.251]

    В противоположность катионам анионы в большинстве случаев не мешают открытию друг друга. Поэтому к реакциям отделения приходится прибегать в сравнительно редких случаях. Чаще же открытие анионов ведут дробным методом, т. е. в отдельных порциях исследуемого раствора. В соответствии с этим при анализе анионов групповые реагенты применяют обычно не для разделения групп, а лишь для их обнаружения. Понятно, если установлено отсутствие данной группы, то нет смысла проводить реакции на отдельные входящие в нее анионы. Таким образом, проведение групповых реакций значительно облегчает работу. [c.456]

    Анионы открывают в растворах, полученных при растворении исходного анализируемого объекта, методами, охарактеризованными выше в гл. 18. Обычно систематический анализ анионов не проводят, а используют дробный метод их обнаружения с учетом сведений предвар тельных наблюдений и испытаний, а также данных, полученных при открытии катионов. [c.512]

    Обнаружение в виде уранилацетата натрия можно также проводить дробным методом из отдельной пробы исходного раствора. Mg + и NH4 не мешают открытию Ыа" . [c.245]

    Принцип дробности предполагает обнаружение искомого иона в присутствии всех посторонних ионов при условии устранения влияния только тех, которые мешают его открытию данной характерной реакцией. Существуют различные способы устранения мешающих ионов. Прежде всего к ним относятся методы, с помощью которых мешающие ионы не удаляются из раствора, а только маскируются изменением кислотности среды (pH), переведением мешающих ионов в другую степень окисления или в комплекс. Это наиболее простые способы. [c.51]

    На основе ферроцианидов цинка предложено несколько методов качественного открытия этого элемента в растворах. На способности Zn2[Fe( N)(ji сорбировать родамин Е основан метод обнаружения Zn + по пурпурному окрашиванию ферроцианидного. осадка [1351]. Реакцию можно выполнить капельным методом. Ее проведению мешают все элементы, дающие с ионами [Fe( N)g] окрашенные соли. [c.272]

    Качественный анализ исследуемого вещества, т. е. открытие элементов или ионов, входящих в его состав, может быть выполнен с использованием хроматографии в тонком слое сорбента на пластинке. Последний метод является простым и быстрым способом качественного обнаружения и полуколичественного определения малых количеств веществ. Объем анализируемого раствора при этом может быть очень малым (тысячные доли миллилитра). [c.43]


    Если к раствору, содержащему ион лития, прибавить раствор цинкуранилацетата, то возникает зеленая люминесценция. Наилучшие результаты получаются при выполнении реакции капельным методом на бумаге. Интенсивность люминесценции зависит от содержания иона лития в исследуемом растворе. При малых количествах иона лития люминесценция обнаруживается только через 1—4 мин после прибавления реактива. Чувствительность реакции, согласно Гото [125] и Миллеру [154], определяется открываемым минимумом 1 мкг иона Li+ при предельной концентрации 1 50 000. Обнаружению мешает ион натрия, дающий аналогичный эффект. Поэтому, прежде чем выполнять реакцию открытия иона лития, необходимо полностью удалить ион натрия. [c.91]

    Развитие химии углеводов тесно связано с поляриметрией. Например, наблюдение мутаротации свежеприготовленных растворов глюкозы привело к открытию ее циклического строения и обнаружению а- и Р-аномеров. Применение метода измерения вращения при монохроматическом излучении (главным образом при длине волны D-линии натрия) оказалось настолько успешным, что позволило определить конфигурации олигосахаридов без помощи измерений дисперсий оптического вращения. [c.121]

    Гёке [58 4 описал метод открытия серебра экстрагированием раствором дитизоната меди в четыреххлористом углероде. В присутствии Ag- фиолетовая окраска переходит в желтую (при малых количествах Ag+ — в оранжево-фиолетовую). Метод позволяет открывать Ag - при его содержании > 10 %. Катионы, образующие более прочные дитизонаты, чем дитизонат меди, мешают обнаружению серебра. — Ярмж. ред. [c.331]

    Метод обнаружения пиридина и его замещенных со свободными а-положениями описан на стр. 367. Он основан на взаимодействии бромциана и бензидина с растворами указанных соединений, в результате которого образуется красный полиметиновый краситель. Так как пиридин образует с водой азеотропную смесь, кипящую при 95°, то цветную реакцию можно осуществить, вводя выделяющиеся пары в раствор реагентов. На этом основан избирательный метод открытия пиридина и реакционноспособных пиридиновых оснований (8- и упиколин), которые тоже летучи с паром. -Пиридинкарбинол слишком мало летуч и потому не дает такой реакции. [c.554]

    Для обнаружения лития предложено большое количество различных методов [408, 437, 485, 804, 833, 1219]. Это — реакции осаждения в водных и неводных растворах, цветные и флуоресцентные реакции, а также наблюдение окрашивания пламени. Однако химические методы открытия лития малоспецифичны и могут быть применены в большинстве случаев только после предварительного отделения лития вместе с другими шелочными металлами от сопутствующих элементов. Поэтому описываемые ниже качественные реакции скорее могут служить для идентификации лития в его соединениях. Наиболее надежно литий в присутствии других металлов можно обнаружить с помощью спектральных методов. [c.26]

    Из методов качественного обнаружения рения следует указать разработанный Б. С. Анисимовым [16] микрометод определения рения в присутствии других элементов. В основу метода качественного открытия рения была положена детально изученная реакция образования окрашенного соединения ЕеО(СЫ5)4 при взаимодействии пер-ренатов с роданидами и хлористым оловом в кислой среде. Но при этой реакции в присутствии молибдена образуется также окрашенный комплекс К2[Мо(СЫ5)5], который мешает открытию рения. Б. С. Анисимов [16] показал, что этой реакцией можно обнаружить рений и в присутствии молибдена, если обесцветить раствор комплексного соединения молибдена добавкой солянокислого гидроксиламина, с которым комплексное соединение рения не реагирует и остается окрашенным. На основе этих наблюдений Б. С. Анисимов [16] разработал оригинальную капельную методику обнаружения рения в присутствии больших количеств молибдена, что представляет до настоящего времени большой интерес. При помощи этой реакции можно в насыщенном растворе молибдата аммония обнаружить с полной достоверностью 0,02у ННе04, что соответствует предельной концентрации 1 66 000 при соотношении Не Мо= 1 3700. [c.24]

    Разделение веществ методом термодиффузии основано на возникновении градиента концентраций в смеси веществ под влиянием градиента температуры (например, один конец запаянной трубки, в которой находится смесь, нагревается, а другой охлаждается). Само явление термодиффузии применительно к водным растворам солей было открыто еще в середине прошлого века. Зтим явлением объясняется также и обнаруженный в то же время термоэлектрг еский эффект в твердых телах, в частности в металлах, проявляющийся при наложении на них температурного поля. Возможность протекания термической диффузии в смесях газов вначале была предсказана теоретически (1911г.), л затем подтверждена и экспериментально (1917г.). [c.160]

    Различие сорбируемости компонентов смеси особенно ярко проявляется при медленном движении смеси через слой зерен сорбента. Лучше адсорбируемое вещество сильнее и поэтому дольше удерживается поверхностью и, следовательно, движется через слой медленнее. Это явление было открыто в 1903 г. русским ботаником М. С. Цветом при разделении экстракта пигментов, выделенных из листьев растений. Введя окрашенный раствор в колонку с адсорбентом (А12О3), при промывании колонки растворителем Цвет наблюдал, как окрашенная полоса разделяется на ряд полос разного цвета, движущихся с разными скоростями. Каждый компонент смеси был представлен отдельной полосой и мог быть выделен в чистом виде. Поскольку в этих опытах о разделении смеси свидетельствовала различная окраска полос, Цвет назвал разделение хроматографическим. Это название сохранилось и поныне, хотя современные методы обнаружения, идентификации и количественного определения компонентов смеси не связаны с окраской веществ, очень многообразны и часто сложны. [c.232]

    В капельном анализе можно использовать целый ряд известных реакций. Однако значительное распространение этого метода стало возможным в первую очередь благодаря широкому применению органических хелато-образующих реагентов, способных к образованию внутрикомплексных соединений . Изменение pH капли чаще всего представляет простую задачу — для этого достаточно подержать б>магу с пятном над открытой склянкой с хлористоводородной или уксусной кислотой или с раствором аммиака. При выполнении реакций на капельной пластинке реакционную смесь можно [нагреть даже до кипения, для чего в каплю погружают горячую платановую проволоку или нагретую палочку из магнезии. Так можно, например, удалить окислы азота. Микропробирки нагревают в водяной, глицериновой или масляной бане или, контролируя температуру, в металлическом блоке. В капельном анализе отдельные компоненты смеси стремятся обнаруживать избирательно. Выбирая подходящую методику выполнения реакции, можно избежать нежелательного влияния мешающих компонентов. Отсутствие длительных и трудоемких процессов разделения составляет большое преимущество капельного анализа и позволяет экономить время. Разумеется, требуется хорошее знание реакций отдельных элементов, чтобы в каждом конкретном случае при заданных условиях можно было выбрать оптимальный вариант их выполнения. По незначительному количеству пробы капельный анализ является разновидностью ультрамикрохи-мического метода. Часто без затруднений можно обнаружить до 0,1—0,01 мкг вещества. Чувствительность капельной реакции можно повысить, используя особую технику ее выполнения. Подсушивание первоначально взятых капель пробы и реактива уже повышает концентрацию реагирующих веществ и тем самым понижает открываемый минимум. Если нанесение капель чередуют с подсушиванием, то открывается еще меньшее количество вещества. Еще более эффективна техника концентрирования ( концевая , акротех-ника), предложенная Скалос 120]. Острым кончиком полоски фильтровальной бумаги впитывают небольшую часть капли пробы и высушивают ее. Такую операцию повторяют до тех пор, пока вся капля не будет сконцентрирована на кончике полосы бумаги. Аналогичным образом можно также сконцентрировать вещество в тонкой нити и после добавления реактива рассмат-ривать ее под микроскопом. Эти приемы увеличивают чувствительность на два-три порядка. Чувствительность можно повысить, используя также ионообменные смолы. Так, при обнаружении кобальта 121] можно провести [c.54]

    Открытие NHI-ионов. Поместите в пробирку 5 капель анализируемого раствора, добавьте 5 капель 2 н. раствора Naj Og или NaOH. Затем содержимое пробирки нагрейте на слабом пламени горелки до кипения. При этом в случае присутствия в анализируемом растворе со лей аммония из пробирки выделяется NHg, который o6i j руживают указанными выше методами (см. 16, стр. 10)). Обнаружению NHI другие катионы не мешают. [c.120]

    Известно [351, 409, 1525] много производных и-диметиламино-бензилиденроданина или родственных ему соединений, предложенных в качестве чувствительных реагентов на серебро. Так, и-диметиламинобензилиден-2-тиогидантоин [810] образует с ионами серебра в кислой среде красно-оранжевый осадок. и-Диметил-аминобензилидентиобарбитуровая кислота [1315] и некоторые ее производные, растворенные в ацетоне или в уксусной кислоте, также являются чувствительными реагентами на серебро, образуя с ним соединения красно-фиолетового цвета. Открытие серебра проводится из слабокислого азотнокислого раствора, чувствительность реакции составляет при выполнении капельным методом 0,02 мкг, предельное разбавление — 5-10 . Обнаружению серебра этой реакцией мешают Hg, РЬ, Ан, Pd, РЬ, Кн и Ой. Влияние ртути можно устранить прибавлением цианида калия. [c.50]

    Для анализа используют воздушно-ацетиленовое пламя [611, 1074, 1412], ацетилено-кислородное [750], водородно-кислородное 880, 881, 887], а также воздушное пламя, насыщенное смесью аргон — водород (чувствительность 0,02 мкг (л 1мл )[1440а]. При использовании пламенного спектрофотометра на основе монохроматора УМ-2 и воздушно-ацетиленового пламени чувствительность открытия галлия (Х=4172,06 А) равна 2 мкг мл [406]. Чувствительность определения галлия с ацетилено-кислородным или водородно-кислородным пламенем значительно повышается при добавлении к испытуемому раствору ацетона [664]. К сожалению, точные указания о границах чувствительности при обнаружении галлия методом фотометрии пламени отсутствуют. Вместо непосредственного обнаружения галлия в спектре пламени его растворов можно применить катодное осаждение галлия на меди или угле с последующим анализом в дуге [1296]. [c.29]

    Открытие и отделение NH hohob. Поместите в две пробирки по 5 капель анализируемой смеси. В. одну пробирку (проба I), в которой предполагается открыть К -ионы, добавьте 5 капель 2 н. раствора Na. Og или NaOH. В другую пробирку (проба II), в которой будете обнаруживать На -ионы, прилейте 5 капель 2 н. раствора К2СО3 или КОН. Затем содержимое пробирок нагрейте на слабом пламени горелки до кипения. При этом в случае присутствия в анализируемом растворе солей аммония из обеих пробирок выделяется NH3, который обнаруживают описанными выше методами (см. 16, стр. 92). Обнаружению NH ионов другие катионы не мешают. [c.102]

    Следует отметить, что специфические особенности свободных радикалов в растворах (кратковременность yщe твoiвaния, а главное параллельное протекание многих реакций) в подавляющем большинстве случаев обусловили значительные затруднения при исследованиях физико-химическими методами (например, измерение магнитной восприимчивости). Таким образом, прямых методов обнаружения и идентификации кратковременно существующих радикалов в растворах в настоящее. время еще нет. С открытием электронного парамагнитного резонанса химики получили важный физический метод изучения свободных радикалов, однако метод ЭПМР неприменим к большинству свободнорадикальных реакций в растворах в связи с тем, что концентрации свободных радикалов в этих случаях чрезвычайно низки. [c.357]

    Для качественного обнаружения НДГК может служить также реакция с родановым л<елезом [304]. Эту реакцию дают все галлаты (низшие и высшие), нордигидрогваяретовая кислота н гваяковая смола. В случае присутствия галлатов и гваяковой смолы появляется промежуточная синяя окраска. Бутилоксианизол и тиодипропионовая кислота с родановым железом не обнаруживаются. В связи с ограниченным количество.м железа, присутствующим в смеси, токоферол не успевает вступить в реакцию с ним, в то время как другие антиокислители реагируют быстро. Только при очень большом (примерно 0,5%) содержании в масле токоферола (масло пшеничны.к зародышей) он дает положительную реакцию с раствором индикатора при содержании токоферола 0,17% —реакц1 я уже отрицательна. Таким образом, то количество токоферола, которое обычно присутствует в жирах и маслах, не оказывает влияния на открытие галлатов, гваяковой смолы и нордигидрогваяретовой кислоты вышеуказанным методом. [c.270]

    Раствор, содержащий 5% хлорамина, может быть применен вместо хлорной воды [220] для открытия ионов брома и иода, для замены белильной извести в индофенольной реакции, вместо перекиси водорода при обнаружении кофеина, и в качестве окисляющего агента при определении индикана в моче. В количественном анализе он дает удовлетворительные результаты [221] при потенциометрическом определении трехвалентного висмута и мышьяка, двухвалентного олова и железа, ионов ферроцианида, сульфита, нитрата и иода, гидрохинона, хингидрона и солянокислого гидразина. Титр раствора хлорамина Т заметно не изменяется при стоянии раствора в течение 3 месяцев и может быть установлен но трех-окисн мышьяка. Титрование проводят в кислом растворе. Прн этом тиоцианат-ион [222] окисляется количественно в цианат-н сульфат-ионы, гппофосфит-ион —в фосфит-ион (при 24-часовом стоянии) и азотистая кислота—в азотную [223]. Особенно большое значение хлорамин Т имеет как заменитель иода при анализе сульфита [224] в контроле сульфитнобумажного производства. Этим методом можно также определять концентрацию гидросульфита натрия [225а]. Так как ион иода легко окисляется в свободных иод подкисленным раствором хлорамина Т, последний может быть применен для любого иодометрического титрования нри предварительном прибавлении к раствору небольшого количества иодистого калия и крахмала [2216, 222, 2256]. [c.41]

    На фильтровальной бумаге, кроме того, разделяют ионы. Хорошим примером этого является открытие гексацианоферрат-иона [Ре(СЫ)б и роданид-иона S N" при их совместном присутствии в растворе. Если пропитать фильтровальную бумагу раствором хлорида железа (HI), а затем нанести на нее каплю анализируемого раствора, содержащего ионы [Ре(СЫ)б1 hS N", то на бумаге появляется синее пятно берлинской лазури Ре4[Ре(СМ)б]з, окруженное красной зоной роданида железа Pe(S N)a. Таким образом удается обнаружить гексациано-феррат- и роданид-ионы при их совместном присутствии. В данном случае ионы [Ре(СЫ)б1 " отделяются от мешающих ионов S N благодаря фильтрующим свойствам бумаги. Неспецифическая реакция обнаружения того или иного иона иногда становится специфической при выполнении ее капельным методом на бумаге. [c.43]

    Карбониевые ионы, открытые в начале 1900-х годов, сыграли важнейшую роль в развитии органической химии. Сама концепция валентности была поколеблена, когда оказалось, что сушест-вуют соединения с трехвалентным атомом углерода — ионы карбония и свободные радикалы. С тех пор развитие представлений химии карбоний-ионов в той или иной мере оказывало влияние почти на все области органической химии. Ряд прогрессивных методов современной органической химии, а также многие ее достижения обязаны своим появлением исследованиям карбониевых ионов. Назовем хотя бы следующие разработка физических методов обнаружения и идентификации частиц в растворах, рациональный подход к интерпретации молекулярных перегруппировок и стерических препятствий, использование кинетики как способа выяснения деталей механизма реакций, применение кваптовомехапических методов к органическим веществам, обнаружение новых реакций и веществ и формулировка основных представлений о природе ионных взаимодействий, особенно для неводных растворов. [c.9]


Смотреть страницы где упоминается термин Методы открытия обнаружения в растворах: [c.155]    [c.483]    [c.121]    [c.36]    [c.101]    [c.537]    [c.27]    [c.21]    [c.58]    [c.349]    [c.286]    [c.391]    [c.58]    [c.549]   
аналитическая химия ртути (1974) -- [ c.36 ]




ПОИСК







© 2025 chem21.info Реклама на сайте