Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты полимерные

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    Заслуживает особого внимания реакция ацилирования аминокислот. Другие реакции аминокислот также имеют важное биологическое значение. Папример, как будет показано позднее, в основе всех реакций витамина Вб лежит образование оснований Шиффа (взаимодействие амино- и альдегидной групп гл. 7). Однако именно ацилирование аминогрунны одной аминокислоты карбоксильной (активированной) группой другой аминокислоты приводит к образованию пептидной связи и затем к образованию полимерной молекулы—белка. Для химика-биооргаиика весьма интересно сопоставить синтез наиболее сложных макромолекул в пробирке и в организме. [c.52]

    В 1903 г. Э. Фишером высказана пептидная теория, давшая ключ к тайне строения белка. Фишер предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Идея о том, что белки — это полимерные образования, высказывалась уже в 70—80-е годы XIX в. Р. Хертом и А. Я. Данилевским. Современные исследования позволяют различигь в сфуктуре белка первичную, вторичную, третичную и четвертичную структуры. [c.258]

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]

    К таким жидкостям прежде всего относится вода. К этому классу относятся также жидкости, содержащие несколько гидроксильных групп глицерин, гликоль и др. Эти вещества и вещества, содержащие гидроксильные и аминные группы, имеют высокую диэлектрическую проницаемость при сравнительно низком дипольном моменте благодаря ассоциации их молекул в полимерные молекулы. Высокую диэлектрическую проницаемость имеют вода, глицерин, муравьиная кислота, аминокислоты и др. Жидкости этой группы хорошо смешиваются между собой. [c.221]


    Образование меланина происходит в несколько стадий. Когда фотон ультрафиолета соответствующей энергии сталкивается с клеткой, производящей меланин, активируется фермент, управляющий окислением аминокислоты тирозина. Фотоны с меньшей энергией вызывают переход меланина в полимерное состояние. Окончательная структура меланина - разветвленная цепь модифицированного тирозина. Рис. УП.17 показывает некоторые этапы процесса образования меланина. Люди с черной или смуглой кожей более устойчивы к опасному действию солнечной радиации. Меланин в эпидермисе поглощает солнечное УФ-из сучение, рассеивая энергию и предохраняя от нее живые делящиеся клетки. [c.471]

    Пространственное строение решающим образом влияет на свойства и биологические функции органических веществ, участвующих в процессах жизнедеятельности. Большинство таких веществ оптически активны и встречаются в природе обычно в одной из антиподных форм это относится к белкам и образующим их аминокислотам, нуклеиновым кислотам, сахарам, стероидным гормонам, природным оксикислотам, ферментам, витаминам и др. Свойства природного каучука тесно связаны с определенной геометрической конфигурацией его полимерной цепи. Еще большее значение имеет в рассматриваемой области конформация, в особенности если речь идет о таких полимерах, как белки и нуклеиновые кислоты. Ни один вопрос биохимии не может быть решен на современном уровне без тщательного учета стереохимических факторов. [c.623]

    О том, как происходил отбор структур, каков его механизм, сказать довольно трудно. Но этот процесс оставил нам своего рода. музей. Подобно тому как из 107 химических элементов только 6 органогенов да 10—15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции происходил тщательный отбор и химических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен из 100 известных аминокислот в состав белков входит только 20 лишь четыре нуклеотида лежат в основе-всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. [c.196]

    Некоторые аминокислоты не укладываются в конформацию а-спирали из-за стерических затруднений, которые создает боковая группа Н. Это приводит к резким разрывам в спиральных участках полимерной цепи. а-Спирали в некоторых белковых молекулах составляют значительный процент, в других их мало или вообще нет. [c.11]

    Во всем предыдущем изложении мы сознательно избегали упоминания о важнейших биологических полимерах — белках и нуклеиновых кислотах, потому что принцип построения этих молекул существенно сложнее, чем описанных выше синтетических и природных полимеров. Во-первых, они построены не из одного, а из нескольких различных мономеров. Например, белки, полимерная цепь которых образуется путем соединения а-аминокислот ЫНг—СН(К)—СООН, где Н — различные органические радикалы, и имеет структуру вида [c.147]

    Как видно из приведенных в таблице 15 формул, среди белковых аминокислот встречаются соединения, имеющие алифатические, ароматические и гетероциклические радикалы, дополнительные функции (оксигруппа, меркаптогруппа 8Н). Разнообразие химического строения, присутствие многих функциональных групп делают полимерную молекулу белка химически весьма активной, объясняя ту роль, которую белки играют в живых организмах, в обмене веществ — постоянном взаимодействии живых организмов с внешней средой. [c.278]

    Широко используют в настоящее время твердофазный синтез, при котором первая аминокислота закрепляется на полимерном [c.346]

    На фоне этих частичных успехов особенно интересен метод адсорбционного расщепления, разработанный С. В. Рогожи-ным, В. А. Даванковым и сотрудниками [72]. В полимерный носитель вводят остатки оптически активной аминокислоты. Через колонку, заполненную таким адсорбентом, пропускается раствор солей меди или другого металла-комплексообразова-теля при этом металл образует комплекс с закрепленной на носителе аминокислотой. Через подготовленную таким образом колонку пропускают раствор рацемической аминокислоты Ь 0. За счет комплексообразования с участием иона меди и закрепленной на носителе оптически активной аминокислоты 2 могут образоваться два диастереомерных комплекса  [c.110]

    Последующий рост полимерной цепи осуществляется аналогичным образом, но с участием аминогруппы амида аминокислоты  [c.113]

    Белками называют природные полимерные вещества, состоящие из остатков а-аминокислот (см. табл. 29.1). Аминокислоты в белках связаны пептидными связями С—N. Структуру цепи такого белкового [c.447]

    В последние годы развитие получила химия ударного сжатия. При сжатии твердых тел и жидкостей ударными волнами, образуемыми, например, детонацией взрывчатых веществ при взрывах, в миллионные доли секунды развиваются в веществе очень высокие давления. При этом образуются активные частицы как радикального, так и ионного типов. Последствия прохождения через вещество ударной волны могут, быть самыми различными — раздробление вещества, распад сложного вещества на относительно более простые, но и образование полимерных цепей. К примеру, сырой каучук при прохождении ударной волны за доли секунды превращается в резину под воздействием ударных волн аминокислоты превращаются в простейшие белки и т.д. [c.222]


    А если учесть, что глюкоза и подобные ей соединения образуются почти что из ничего, т.е. являются фактически первыми веществами живой клетки по биосинтетическому пути, то можно отдать им предпочтение в очередности написания. Если аминокислоты, и особенно их полимерные производные, полипептиды и белки, в большей степени сосредоточены в животных организмах, то углеводы и их производные — это прерогатива царства растений. [c.31]

    Полимер-субстратные взаимодействия были изучены методом газовой хроматографии данные использованы для определения степени рацемизации аминокислот и других природных соединений. Во всех случаях о-энантиомер рацемической смеси аминокислот элюировался из ь-аминокислотиой (полимерной) фазы раньше 1.-формы. Из рис. 5.14 следует, что преимущественно взаимодействует один энантиомер. Такой благоприятный стэкинг между акцепторной поверхностью полимера и субстратом невозможен, если субстрат имеет о-коифигурацию. Значение диметилсилоксановых [c.300]

    Ацилированные препараты хитозана в водной среде набухают, образуя системы, обладающие высокой селективной сорбционной способностью по отношению к аминокислотам, красителям, а также к разделению рацемических смесей. Это обусловливает интерес, который представляют данные препараты в качестве полимерного носителя в гель-хроматофафии, а также при изготовлении волокнистых и пленочных материалов медико-биологического назначения. Под влиянием гидрофобных ацильнЫх радикалов сорбированная этими препаратами при набухании вода частично гидратирует полимерный субстрат, а частично остается инклюдйрованной в порах геля. При этом изменяется структура жидкой воды, обусловливая возможность регулирования интенсивности гидрофобных взаимодействий в системе. В табл. 6.6 приведены результаты экспериментов по изучению взаимодействия воды в изотермических условиях (298 К) с ацилированными препаратами хитозана. [c.334]

    Полипептиды под действием кислотных и щелочных агентов способны к гидролитической деструкции. Гидролиз белков кипящими растворами разбавленных кислот (НС1, H2SO4) приводит к практически полному (до 96-98%) распаду полимерного субстрата на элементарные аминокислоты  [c.357]

    Нуклеофильная концевая аминогруппа белка (остаток первой аминокислоты или белкового мономера, аминогруппы остальных аминокислот вовлечены в образование полимерной цепи, т. е. образуют ненуклеофильные амидные связи) замещает атом фтора по механизму присоединения — отщепления. Такая реакция протекает с образованием отрицательно заряженного промежуточного соединения. [c.50]

    Группа Летсингера и Клотца разработала недавно метод синтеза иеитидов с использованием матриц этот метод напоминает природный механизм синтеза на рибосомах (рис. 2.1). В методе используются полимерный носитель и полинуклеотидная матрица, но отсутствует необходимость, как и в природных системах, временно защищать аминокислоты для образования правильных связей. Такой подход назван методом комплементарного носителя (рис. 2.5). Растущая полипептидная цепь связана концевой карбоксильной группой с 5 -ОН-группой олигонуклеотида эфирной связью. Новая поступающая аминокислота также присоединена эфирной связью, но с З -ОН-групной второго олигонуклеотида. [c.65]

    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]

    Генетическая информация передается от родительской клетки к дочерней путем репликации (синтеза) ДНК- Генетическая информация сохраняется в ДНК до тех пор, пока не понадобится, а затем превращается в инструкцию по синтезу белка специфической последовательности в процессе транскрипции. Генетическая инструкция переписывается на полимерную молекулу РНК (мРНК). Она в свою очередь взаимодействует с соответствующими специфическими амииоацил-тРНК, в результате чего происходит последовательное присоединение аминокислот. Перевод генетической информации из РНК в специфическую аминокислотную последовательность называется трансляцией. [c.108]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Белки представляют собой полимеры аминокислот. Они играют роль главного структурного элемента в организмах животных. Ферменты, катализаторы биохимических реакций, по своей природе принадлежат к белкам. Все встречающиеся в природе белки образованы приблизительно 20 аминокислотами. Аминокислоты хиральны, т.е. способны существовать в виде несовместимых друг с другом изомерных форм, являющихся зеркальными отражениями друг друга,-энантиомеров. Обычно биологической активностью обладает только одна из двух энантиомерных форм. Структура белков определяется последовательностью аминокислот в полимерной цепи, скручиванием или растяжением цепи, а также общей формой молекулы. Все эти аспекты белковой структуры оказывают важное влияние на их биологическую активность. Нагревание или другие виды обработки могут инактивировать, или денатурировать, белок. [c.464]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]

    Химизация предусматривает обеспечение потребностей народного хозяйства в химической продукции ускорение развития и производства химической промышленности рост эффективности применения химических веществ разработку и внедрение новых, более передовых и ресурсосберегающих технологий. Среди них наиважнейшая задача — это развитие сельского хозяйства, которое позволит обеспечить увеличение поставок, расширение ассортимента п улучшение качества минеральных удобрений и химических средств защиты растений. Предполагается широкое внедрение полимерных материалов во все сферы сельскохозяйственного производства. Для улучшения качества сельскохозяйственной продукции необходимы поиск и внедрение новых бёзвредных консервантов для кормов и зерна, увеличение ассортимента белковых кормов, аминокислот и других химических [c.5]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    Познание химического сгрое-ния белков позволило решить вопрос о их синтезе. В этом отношении также достигнуты большие успехи. В настоящее время используют разработанный в начале 60-х годов твердофазный синтез. При этом первая аминокислота закрепляется на полимерном носителе (специальной полнстирольной смоле) и к ней последовательно подшиваются все новые и новые аминокислоты. По окончании синтеза готовая полипептидная цепь снимается с носителя. Таким методом были синтезированы инсулин, рибонуклеаза, а за ними и многие другие белки. Для синтеза рибонуклеазы необходимо было осуществить более десяти тысяч отдельных операций. В настоящее время разработаны автоматы, осуществляющие все необходимые операции по заданной программе. [c.336]

    Белки — природные соединения (полимерные вещества), представляющие собой продукты поликонденсации некоторых 2-аминокислот. Структуру цепи гакбго белкового полимера можно представить следующим образом  [c.245]

    Как и в реакциях предыдущего типа, не принципиально, происходит ли при этом включение всего мономера в полимерную цепь, или от мономера отщепляется низкомолекулярный фрагмент. Например, по тому же типу протекает образование полиаминокислот из N-кapбoк иaнгидpидoв аминокислот [c.419]

    Последние достижения по использованию полимерных сорбентов в ВЭЖХ рассмотрены работе, где описано их применение для разделения аминокислот и органических кислот, пептидов, белков, углеводов, неорганических ионов и различных полимеров. [c.102]

    Полипептиды и белки (а белки являются полипептидами большой степени конденсации) очень широко распространены как в растительном, так и в животном мире — это обязательные компоненты любого живого организма. Их также отличает большое разнообразие. Провести четкую грань между полипептидами и белками нельзя, так как в природе найдены представители этого класса производных а-аминокислот практически сплошного спектра распределения по массе или по количеству аминокислотных остатков от нескольких аминокислот (3-5) до нескольких десятков и даже сотен тысяч таких компонент в одной такой био-полимерной молекуле. Разнообразие полипептидов можно подсчитать, исходя из того факта, что в их построении может участвовать (и обычно участвует) 20 аминокислот, которые могут соединяться между собой в любом порядке, в любом сочетании, с любой степенью повторяемости. Полипептид-ная цепь из 300 аминокислотных остатков на базе 20 протеногенных аминокислот может быть представлена 10 5° структур. Это практически бесконечное число возможных изомеров. Отсюда и бесконечные возможности белковых молекул в плане полифункциональности их свойств, поэтому они и составляют основу всего живого. [c.81]


Смотреть страницы где упоминается термин Аминокислоты полимерные: [c.219]    [c.225]    [c.90]    [c.90]    [c.92]    [c.108]    [c.300]    [c.268]    [c.25]    [c.268]    [c.153]    [c.301]    [c.151]    [c.94]    [c.203]   
Химия сантехнических полимеров Издание 2 (1964) -- [ c.384 ]




ПОИСК







© 2025 chem21.info Реклама на сайте