Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривая чистого вещества

    Подобное же явление (появление второй фазы) наблюдается в точке плавления нри повышении температуры твердого тела во времени. Пересечение ординаты, соответствующей постоянной температуре, с кривой изменения температуры во времени дает точку плавления. На практике точка пересечения находится обычно путем экстраполяции. При известных значениях температуры плавления или температуры замерзания абсолютно чистого вещества этим методом можно рассчитать количество примесей, содержащихся в образце. Однако необходимо помнить о возможности существования кристаллических модификаций, которые изменяют ход кривой охлаждения. У очищенных парафинов кристаллические модификации, которые могут влиять на измерение плотности и коэффициентов расширения [234—235], встречаются вблизи точки плавления. [c.194]


    Равновесия между различными фазами чистого вещества удобно представлять в виде фазовой диаграммы в координатах давление-температура. Отдельные участки фазовой диаграммы соответствуют условиям термодинамической устойчивости какой-либо одной фазы, эти участки разграничиваются кривыми, которые соответствуют областям равновесия между двумя фазами совокупность условий одновременного сосуществования трех фаз определяется точкой, где сходятся три кривые и которая называется тройной точкой. Согласно правилу фаз, для чистого вещества число / независимо изменяющихся параметров состояния, как, например, температура и давление, определяется соотношением / = 3 - р, где р-число имеющихся в наличии фаз. Принцип Ле Шателье предсказывает, что все кривые равновесий между двумя фазами должны иметь положительный тангенс угла наклона, за исключением межфазной кривой лед-вода (и еще нескольких веществ), отрицательный тангенс угла наклона которой обусловлен уменьшением объема льда при плавлении. Пользуясь фазовыми диаграммами, можно предсказать, ведет ли себя вещество при плавлении подобно воде либо сублимирует подобно твердому диоксиду углерода для этого требуется лишь знать, больше или меньше атмосферное давление, чем давление в тройной точке данного вешества. [c.148]

    Градуировку термопары производят по температурам плавления чистых веществ. Для этого наряду с кривыми охлаждения сплавов ра,зличного состава следует получить также кривые охлаждения для чистых веществ с известными температурами плавления. [c.236]

    Если необходимо определить несколько компонентов, то для каждого из них определяют калибровочную константу указанным способом метод удобен тем, что на результаты анализа мало влияют колебания параметров хроматографического опыта. В случае точно дозируемых объемов метод метки не дает никакого преимущества по сравнению с методом построения калибровочных кривых чистых веществ. Кроме того, использование метода метки ограничивается преимущественно определением лишь небольшого числа компонентов, содержание которых в не очень сложных по составу смесях не превышает примерно 10%. [c.127]

    Вопреки ошибочным взглядам некоторых авторов, для существования и. т. совершенно безразлично, по какому закону — линейному или нелинейному — внешний параметр влияет на концентрацию компонентов. Очевидно, что здесь имеет значение только взаимосвязь между изменениями концентрации компонентов, определяемая протекающими в системе реакциями. Также не имеет значения форма спектральных кривых чистых веществ достаточно просто факта их пересечения в не- [c.32]


    Один из примеров такого равновесия уже разобран в разд. 23.3.5 (понижение давления пара раствора по сравнению с давлением пара чистого растворителя при той же температуре). При этом предполагалось, что из раствора может испаряться только растворитель. Далее будем полагать растворы идеально разбавленными, т. е. считать осмотический коэффициент и коэффициент активности равным 1. Нанесем на диаграмму состояния чистого вещества изменение давления пара над раствором. (понижение относительно чистого растворителя) некоторой концентрации от температуры (рис. Б.26). Из сопоставления кривых сразу же становится ясным, что понижение давления пара лри постоянной температуре соответствует повышению температуры кипения при постоянном давлении. Отношение Ар/ЛГ приблизительно равно тангенсу угла наклона кривой р — Т для раствора, и с хорошим приближением можно заменить его наклоном кривой р—Т чистого растворителя. Если подставить значение Ар из первого закона Рауля (311) й пр Ар р = Х2, то с учетом уравнения (350) получим [c.279]

    Точки экстремума (максимумы и минимумы) спектральной кривой чистого вещества являются корнями дифференциального уравнения дг д1, = 0. В соответствии с уравнением (1.10) точки экстремума в спектре поглощения смеси являются корнями дифференциаль- [c.34]

    Для градуировки берут несколько эталонных веществ с различными температурами плавления, охватывающими весь рабочий интервал температур. Определение проводят при той же скорости нагрева и точно в тех же условиях, в которых будут работать в дальнейшем. На оси абсцисс откладывают температуры плавления чистых веществ по литературным данным, а на оси ординат — разницу между истинными и полученными значениями, т. е. поправки. Полученные точки соединяют плавной кривой. [c.184]

    Точки экстремума (максимумы и минимумы) спектральной кривой чистого вещества представляют собой корни уравнения де/дк = 0. В соответствии с уравнением (1.11) точки экстремума в спектре погло- [c.27]

    Последовательно увеличивая в растворе долю второго вещества, мы получим раствор, который в момент начала отвердевания будет насыщен одновременно обоими компонентами (кривая 3). При его охла ждении начинает кристаллизоваться сразу смесь ве ществ при постоянной температуре (в точке Ь). Этому процессу соответствует горизонтальный участок Ьс, кривая 3 аналогична кривой / для чистого вещества. Так как температура кристаллизации такой смеси ниже температуры начала кристаллизации любых других смесей в рассматриваемой системе, то смесь данного состава будет самой легкоплавкой. Эта смесь называется эвтектической (от греч. хорошо плавящийся ), или эвтектикой. При плавлении эвтектики образуется раствор, насыщенный относительно всех ее компонентов. [c.289]

    Если изучать охлаждение предварительно расплавленных смесей, начиная от второго чистого вещества, то получится картина, подобная изображенной на рис. 65, причем кривых вида 2 будет столько, сколько взято проб между чистым компонентом и эвтектической смесью. [c.215]

    Кривая НС — линия равновесия между паром и жидкостью, которое начинается в тройной точке и продолжается до критической точки С. Давление и температура Г в этой точке называются критическими. В точке С свойства жидкой и паровой фаз становятся одинаковыми. Для чистых веществ критическая точка может быть определена как точка, выше которой жидкость не может существовать как единственная отдельная фаза. [c.23]

    На рис. 12 показано изменение фазовой оболочки для смесей метана и пропана. Критические точки чистых веществ соединены пунктирной линией, проходящей через критические точки их смесей. Линии упругости паров и пунктирная линия образуют область, в которой могут существовать как жидкая, так и паровая фазы, содержащие любые концентрации этих двух компонентов. На рис. 13 показаны критические кривые для бинарных систем наиболее распространенных углеводородов. [c.29]

    Диаграммы состояния различных систем строят на основании опытных данных. Наиболее распространенный метод для построения диаграмм плавкости — метод термического анализа, и основе которого лежит наблюдение за скоростью охлаждения расплавленных чистых веществ и сплавов различного состава. Изломы на кривых охлаждения свидетельствуют об изменении числа фаз в системе. [c.103]

    Решение. На основании кривых охлаждения строим диаграмму плавкости (рис. 30, б). Кривая 1 соответствует охлаждению чистого золота. При 1337 К на кривой охлаждения наблюдается температурная остановка она соответствует температуре плавления золота. Чистые вещества кристаллизуются при постоянной температуре. По правилу фаз Гиббса (Х1.3) число компонентов К = 1, число фаз Ф = 2, я = 1  [c.235]

    Значения ел, ев, лл и т]в получают из независимых опытов с чистыми веществами. Оптические плотности D и D2 при частотах vi и V2 отсчитываются в максимумах индивидуальных веществ, которые при наложении полос не совпадают с максимумами наблюдаемой суммарной кривой поглощения. [c.216]


    Если два вещества смешать друг с другом в определенных пропорциях и смесь нагреть до высокой температуры, то в подавляющем большинстве случаев образуется совершенно однородная жидкость, представляющая собой раствор одного компонента в другом. Некоторые системы дадут два жидких слоя взаимно насыщенных растворов, и только немногие будут совершенно нерастворимы друг в друге ни при каких условиях. Это относится к таким веществам, которые не разлагаются до температуры плавления. Если такой раствор или сплав охладить, то при некоторой температуре он начинает кристаллизоваться, так как растворимость веществ с понижением температуры, как правило, уменьшается. Природа и количество выпадающего вещества обусловливается природой и количественными соотношениями компонентов в растворе. Как и при всякой кристаллизации, здесь будет выделяться теплота кристаллизации, которая влияет на скорость охлаждения сплава. В некоторых случаях охлаждение может полностью прекратиться и температура смеси в течение некоторого времени будет оставаться постоянной. Таким образом, охлаждая определенный раствор, достигают неравномерного падения температуры в зависимости от происходящих в сплаве процессов. Если наносить на оси ординат температуру, а на оси абсцисс — время, то будут получаться кривые, иллюстрирующие процесс охлаждения. Вид этих кривых будет в высокой степени характерен как для чистых веществ, так и для их смесей различных концентраций. В процессе кристаллизации в зависимости от состава смеси могут выпадать твердые чистые компоненты, или твердые растворы. Кривые, выражающие зависимость температуры кристаллизации и плавления от состава данной системы, называются диаграммами плавкости. Эти диаграммы подразделяются на три типа в зависимости от того, какая фаза выделяется из раствора. К первому типу относятся системы, при кристаллизации которых из жидких растворов выделяются чистые твердые компоненты, так называемые неизоморфные смеси. Второй тип представляют системы, при кристаллизации которых из жидких растворов выделяются твердые растворы с неограниченной областью взаимной растворимости, так называемые изоморфные смеси. Третий тип системы, при кристаллизации которых из жидких растворов выделяются твердые растворы, характеризуются определенными областями взаимной растворимости. [c.227]

    Феноменологический подход может быть использован для определения средних показателей реакционной способности сложных систем, характеризующих ее химическую активность, по аналогии с показателями реакционной способности в химии чистых веществ . Любую многокомпонентную смесь гетероорганических углеводородных молекул можно рассматривать как статический ансамбль компонентов. Следовательно, задача состоит в определении усредненной электронной структуры этого ансамбля. Задача решается в рамках ЭФС на основе обнаруженных [12, 21] закономерностей, связывающих интегральную силу осциллятора (площадь под кривой поглощений излучения в видимом и ультрафиолетовом диапазонах спектра) с потенциалом ионизации (ПИ) и сродством к электрону (СЭ). [c.92]

    Задача работы — построение диаграммы плавкости бинарной системы. Для этого следует получить кривые охлаждения двух чистых веществ и нескольких сплавов заданного состава. [c.112]

    Наличие примесей, как было показано рядом исследователей [1, 2, 8, 24, 36 и др.], смещает кривую зависимости скорости от температуры почти параллельно химически чистому веществу, не искажая характера зависимости. [c.458]

    Точка д соответствует предельному охлаждению расплава. Малейшее понижение температуры вызовет появление кристаллов кадмия, причем расплав начнет обогащаться висмутом. Вследствие увеличения относительного содержания висмута в расплаве продолжение кристаллизации кадмия возможно лишь при дальнейшем понижении температуры. Таким образом, процесс кристаллизации кадмия из расплава отличается от кристаллизации чистого вещества тем, что происходит при непрерывном изменении температуры и состава расплава (по кривой g рис. IX. 1,а). Если наблюдать этот процесс во времени, то оказывается, что участок (рис. IX. 1,6) имеет меньший наклон, чем участок д, так как из-за выделения теплоты кристаллизации скорость охлаждения уменьшается. Число фаз здесь равно 2 (кристаллы кадмия и жидкий расплав), поэтому 5 = й+1 — / = 2+1 — 2=1, т. е, произвольно можно менять только один параметр либо температуру, либо состав. Каждой концентрации расплава отвечает определенная температура начала кристаллизации. [c.105]

    Чтобы построить диаграмму плавкости (частный случай диаграмм состав — свойство), необходимо получить кривые охлаждения сплавов. Для этого берут два чистых вещества и готовят из них ряд смесей -различного процентного состава. Затем расплавляют каждую смесь в отдельности и медленно охлаждают. Через определенные отрезки времени отмечают температуру остывающего расплава. Результаты опыта изображают графически. Точки перелома кривых температура — время проектируют на диаграмму состав —свойство. Полученные точки соединяют (рис. 9). [c.41]

    Так, расплаву с содержанием 20% свинца (точка / ) соответствуют кристаллы с содержанием 4% свинца (точка ). Аналогично, из расплавов, в которых содержание свинца выше эвтектического (правее точки с), кристаллизуется не чистый свинец, а твердый раствор висмута в свинце. Состав кристаллов, находящихся в равновесии с жидкой фазой, определяют, проводя горизонтали до пересечения с кривой Ье. По мере выделения кристаллов жидкий расплав приближается но составу к эвтектическому и по достижении эвтектической температуры дальнейшая кристаллизация происходит при постоянных температуре и составе (точка с). Эвтектическая смесь здесь образована не кристаллами чистых веществ, а кристаллическими растворами свинца в висмуте и висмута в свинце, составы которых заданы точками й е. [c.111]

    По окончании опыта строят кривые охлаждения для чистых веществ и ряда сплавов заданного состава в координатах милливольты (ось ординат) —время (ось абсцисс). Удобно брать при этом следующий масштаб I мВ — 1 см, 30 с — 1 мм. На график следует намести все точки, не соединяя их, а затем, прикладывая линейку, найти характерные точки (перегиб, горизонтальные участки и т. д.). Кривые охлаждения следует расположить так, чтобы они не пересекались друг с другом. [c.114]

    Мэйр, Глазгов и Россини [41 ] предлагают простой графический метод определения параметров азеотропа. Рис. 228 представляет температуры кипения азеотропных смесей бензола с различными углеводородами как функцию состава смеси [53]. Если соединить точку кипения каждого углеводорода (на оси ординат) с точкой, взятой на кривой и соответствующей температуре кипения азеотропа, то можно получить прямые линии с различным наклоном. На основе диаграммы можно предсказать, что углеводороды с точками кипения ниже 68 °С и выше 100 °С не дают азеотропа с бензолом. Далее, для любого углеводорода можно определить температуру кипения и состав его азеотропа с бензолом, если от значения температуры кипения чистого вещества провести линию, параллельную ближайшей уже построенной наклонной прямой. Наклон прямой зависит от температуры кипения чистого углеводорода и степени разветвленности его молекулы. Если, например, на диаграмме отметить точку кипения 3-этилпентана (93,5 °С), то на кривой линии найдем в хорошем соответствии с опытными данными точку кипения азеотропа при 80 °С, а на оси абсцисс — состав азеотропа, равный 96% (мол.) бензола. Подобные диаграммы можно строить по методу Хорсли [54], а также Мейсснера и Гринфельда 55]. Графический метод, предложенный Новиковой и Натрадзе [56], основан на использовании трехмерной координатной системы, изменение параметров в которой выражается пространственной кривой. На оси абсцисс откладывают значения состава азеотропа в % (мол.), на оси ординат — значение, обратное температуре кипения, а на аппликате [c.311]

    По окончании исследования всех сплавов построить для каждого из них кривую охлаждения в координатах время — показание прибора. На кривых охлаждения отметить точки, отвечающие кристаллизации сплава. Это будут горизонтальные или слегка наклонные площадки для моновариантных процессов (кристаллизация чистых веществ или кристаллизация эвтектики) и перегибы или изломы кривой для дивариантных процессов. По калибровочной кривой термопары определить температуры точек, отвечающих кристаллизации каждого сплава. [c.238]

    СОСТОИТ в том, чтобы получить наибольший выход промежуточного вещества А , то в случае, когда энергия активации второй реакции больше, чем первой, оптимальным является падающий температурный профиль по длине реактора. Здесь снова при исходной смеси, состоящей из чистого вещества А , оптимальная температура на входе бесконечна, так что необходимо ограничить температуру верхним пределом Т. Нижний температурный предел в этой задаче также существен. Действительно, увеличение температуры способствует протеканию реакции с большей энергией активации А А ) за счет другой реакции (Л1 -> 2). и потому мы могли бы добиться практически полного превращения А ь А 2, проводя процесс в бесконечно длинном реакторе при бесконечно малой температуре, что, разумеется, бессмысленно. Нри > О существует оптимальная длина реактора, с превышением которой выход вещества А, уменьшается. Некоторые оптимальные профили показаны на рис. IX.6, из которого следует, что по мере увеличения длпны реактора максимальная температура Т поддерживается на все более коротком отрезке и падение температуры от Т до Т . становится все круче. Для большей ясности деталей кривые на рис. IX.6 проведены с общей абсциссой 2 = при этом точки А, В,. . Е обозначают вход в слой соответствующей длины. Точка Е отмечает вход в слой наибольшей длины, который выгодно использовать при данной минимальной температуре [c.269]

    Каждую смесь расплавляют и затем медленно охлаждают, отмечая через оп-зеделенные промежутки времени температуру остывающего сплава. Таким образом получают кривую охлаждения. На рис. 79 приведены кривые охлаждения чистого вещества (/) и сплава (2). Переход чистого вещества из жидкого в твердое состояние сопровождается )ыделением теплоты кристаллизации, поэтому, пока вся жидкость не шкристаллизуется, температура остается постоянной. Далее охлаждение твердого вещества идет равномерно. [c.136]

    На рис. 2-47 представлено построение для определения числа ступеней в секции экстракта. Точка С5 представляет состав растворителя, поступающего в аппарат с мешалкой, в котором находится рафинат. Растворитель составляется из количеств и выделенных из экстракта и рафината, и из добавки свежего растворителя в количестве С, который может быть и вполне чистым веществом состава С. Точка 1 представляет состав сырого экстракта после ступени 1, т. е. на выходе из системы, точка —состав экстракта после отгонки растворителя. Такой же состав имеет и конечный экстракт Ек, отбираемый из системы в качестве готового продукта, и возврат Яд, направляемый на ступень 1. Из уравнений (2-100) и (2-102) следует, что точки С , Q, 1 и (,/1ежат на одной прямой, иричем точки и являются крайними, а точка лежит еще и на кривой равновесия, на ветви экстракта. [c.157]

    Характер кривой охлаждения раствора (расплава) зависит от природы системы. Рассмотрим простейший случай, когда из бинарного раствора кристаллизуются чистые компоненты. При охлаждении такого раствора наблюдается несколько иная зависимость (кривая 2 на рнс. 2.34). Понижение температуры системы от а до Ь, как и при охлаждении чистого вещества, происходит примерно равномерно. Затем из раствора начинают выделяться кристаллы одного из веществ. Так как температура отвердевания раствора нпл<е, чем чистого растворителя, то выделение кристаллов произойдет ниже точки отвердения чистого вещества. При этом состав жидкости будет изменяться, вследствие чего температура ео отвердевания иепрерывно понижается. [c.289]

    Острый максимум свидетельствует о прочности соединения оно плавится без разложения (конгруэнтно), т. е. подобно чистому веществу. Легкоплавкие металлы могут дать тугоплавкий сплав. Примером может служить смесь Mg (т. пл, 650,9 °С) и Sb (т. пл. 630 °С), образующая сплав Mg3Sb2 с т. пл. 961 °С. Кри-сталлизацня соединения А Вт в областях, лежащих по обе стороны прямой сс, протекает в неодинаковых условиях слева от нее молекулы АпВт находятся в сочетании с молекулами А, справа с молекулами В. Изменение условий кристаллизации отражается в том, что с является точкой пересечення двух кривых Е с и сЕг), т. е. в ней происходит излом кривых состав — свойство. Такие точки называются сингулярными (или дальтоновскими). [c.291]

    Во всех рассмотренных случаях диаграммы плавкости строятся по кривым охлаждения. Их вид для чистых веществ и химических соединений совпадает с линией 1 на рис. 65— варьируется лишь высота изотермического пояса (определяемая тугоплавкостью вещества), его протяженность (определенная природой и количеством вещества), а также наклон ее криволинейных участков (производная сШёх зависит от перепада температур на границе вещество — внешняя среда ). Характер же кривых охлаждения смесей может несколько отличаться от кривых. 2 и <3 на рис. 65. [c.220]

    Линию НС часто называют кривой упругости паров. На рис. 8 приводятся данные по упругости паров углеводородов, некоторых хладагентов и воды. Одновременно линия НС является также кривой температур кипения и кондецсации чистых веществ. [c.23]

    В соответствии с графическим методом Нуттинга и Хорслея [47] можно очень просто определить интервал давлений, в котором еще существует азеотроп. На рис. 227 показаны кривые давления насыщенных паров чистых исходных компонентов и азеотропа, нанесенные на диаграмму Кокса в координатах lg р — 1/(Г + 230). Вследствие прямолинейности зависимости такого рода для ее построения нужны только две точки. При давлениях вне интервала, ограниченного ординатами точек пересечения Р и Я прямой для азеотропа с прямыми для чистых веществ, азеотроп уже не существует. Если указанные прямые не пересекаются, то это означает, что азеотроп сохраняется при всех давлениях. Согласно методике Иоффе [48] достаточно знать состав азеотропа при какой-либо одной температуре (давлении), чтобы вычислить состав азеотропа при других температурах (давлениях) методами экстраполяции или интерполяции. Малесинский [49] предлагает зависимости, по которым можно рассчитывать температуры кипения тройных азеотропов. [c.307]

    Возможный характер проявления кризисных состояний в нефтяных дисперсных системах при изменении условий их существования представлен на рис. 7,3, а. Участки KI, КП и KIII соответствуют кризисным состояниям системы и точки и характеризуют начало и конец каждой области. Исходная точка может соответствовать нулевому значению на пересечении координатных осей либо, учитывая предлагаемые рассуждения об остаточной энтропии , может быть смещена по ординате. Для примера на рис. 7.3, б представлена кривая, характеризующая типичный фазовый переход первого рода чистого вещества, например индивидуального углеводорода. Как видно, энтропия испытывает резкий скачок при определенном значении температуры. [c.181]

    Если отклонения от идеальности очень велики, то на кривых давление пара—состав может появиться максимум при положительных отклонениях от закона Рауля (например, система СН3СОСН3— Sa, рис. VII. 5) или минимум при отрицательных отклонениях (например, система Н2О—HNO3, рис. VII. 6). Появление максимума или минимума (экстремума) возможно и при незначительных отклонениях от идеальности, если чистые вещества имеют близкие давления пара. [c.93]

    Повышение температуры любого тела, независимо от его агрегатного состояния, ведет к увеличению энтропии. В фазовых переходах (плавление, кристаллизация, кипение, конденсация, сублимация и т. п.) энтропия тела изменяется скачкообразно при Т = = onst. Кривая зависимости энтропии чистого вещества от температуры исходит из начала координат, что соответствует положению Нернста. [c.98]

    Вернемся к рис. 11.7. Из него видно, что существует точка пересечения кривых 7 (Л 2) и 72( 2)- называется эвтектической. В этой точке сосуществуют три фазы жидкая эвтектического состава и две твердые (чистые вещества). Соответственно А зд. и — состав и температура эвтектики. Термин "эвтектика" в переводе с феческого означает легкоплавящийся . Прямая ДА 2) = называется прямой солццуса. Ниже этой прямой система всегда находится в твердом состоянии. Диафамма, представленная на рис. 11.7, носит название диаграммы плавкости. [c.201]

    Перейдем к обсуждению свойств системы с диаграммой плавкости, изображенной на рис. 11.7. Если фигуративная точка расположена над кривыми ликвидуса, то система находится в жидком состоянии. В соответствии с правилом фаз у нее три независимые степени свободы, например Р, Тм Х- . Ниже прямой солидуса система находится в твердом состоянии это механическая смесь твердых кристаллов двух чистых веществ. В этом состоянии (точка К) у системы две степени свободы, так как в отличие от жидкого (точка А) состояния система двухфазна. [c.201]

    Кривые охлаждения используют для построения диаграммы плавкости. Для этого переносят с кривых охлаждения чистых веществ, эвтектического состава, пяти-шести смесей различных концентраций температуры появления новых фаз на диаграмму температура— состав (рис. 6.1, а), откладывают на оси ординат температуры кристаллизации (плавления) чистых компонентов ( а и in ). На полученной диаграмме линии и ta E показывают зависимость температуры начала кристаллизации компонентов А и В от состава системы. Выше линии называемой линией ликви- [c.41]


Смотреть страницы где упоминается термин Кривая чистого вещества: [c.215]    [c.29]    [c.352]    [c.185]    [c.107]    [c.114]   
Руководство по физической химии (1988) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Чистое вещество



© 2025 chem21.info Реклама на сайте