Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные атмосферы, свойства

    Теоретические расчеты коэффициентов активности основаны на представлениях, которые раскрывают природу сил, вызывающих отклонение свойств реальных растворов от свойств идеальных. Для расчета коэффициентов активности ионов используется теория Дебая —Хюккеля. По этой теории ион в растворе рассматривается как заряженная частица, окруженная ионной атмосферой преимущественно из противоположно заряженных ионов, а взаимодействие иона с ионной атмосферой имеет электростатический (кулоновский) характер. Коэффициенты активности зависят от заряда иона и параметров ионной атмосферы ее размеров и плотности. Параметры ионной атмосферы определяются ионной силой раствора /, вычисляемой как полусумма произведений концентрации всех ионов в растворе на квадрат их заряда 2  [c.24]


    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    Высокочастотное титрование — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, поляризуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эффектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрической ячейки X складывается из активной составляющей А/акт — ИСТИННОЙ ПрО-водимости раствора — и реактивной составляющей реакт — МНИ-мой электропроводности, зависящей от частоты и типа ячейки  [c.111]

    Плотность ионной атмосферы, ее радиус, скорость возникновения и разрушения сложным образом влияют на термодинамические и электропроводные свойства электролита. Количественно учесть влияние всех этих фактов теория Дебая и Гюккеля была в состоянии только для простейших электролитов и при условии очень сильного разбавления. [c.119]


    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    В основу теории положена идея о наличии вокруг каждого иона ионной атмосферы. Образование ионной атмосферы объясняется тем, что одноименно заряженные ионы взаимно отталкиваются, а разноименно заряженные взаимно притягиваются. Поэтому каждый ион окружается ионами противоположного знака. Ионная атмосфера содержит и положительные, и отрицательные ионы, однако в среднем вокруг каждого положительного иона имеется избыток отрицательных ионов, а вокруг каждого отрицательного — избыток положительных. Плотность ионной атмосферы максимальна у центрального иона, с удалением от него уменьшается. На определенном расстоянии, которое можно считать границей ионной атмосферы, количество ионов каждого знака становится одинаковым. Размер и плотность ионной атмосферы Дебай и Хюккель связали с термодинамическими свойствами растворов электролитов. В частности, [c.132]

    В последние годы довольно широкое распространение получило мнение, что основную роль в агрегативной устойчивости обычных латексов играет структурно-механический фактор. Однако эту точку зрения применительно к латексам, стабилизованным мылами, нельзя считать правильной. Было показано, что поверхность глобул стабилизованных латексов обычно покрыта слоем эмульгатора лишь на 30—40%. При значительной ненасыщенности адсорбционного слоя на поверхности глобул говорить о наличии вокруг частиц двухмерных студней и о их структурно-механических свойствах едва ли возможно. Устойчивость латексов, стабилизованных мылами, определяется, в основном, действием отталкивающих сил между двойными электрическими слоями, возникающих при перекрытии ионных атмосфер. При этом собственно стабилизующей частью молекулы стабилизатора является ее гидратированные ионизированные группы, а роль углеводородного радикала сводится к фиксации молекулы стабилизатора на межфазной поверхности полимер — вода. [c.384]

    Явление экранирования сильно влияет на свойства биополимеров. Так, стабилизацию вторичной структуры ДНК с ростом ионной силы можно объяснить увеличением степени экранирования заряженных фосфатных групп ее комплементарных цепей ионными атмосферами. [c.206]

    Для того чтобы установить, как изменяются термодинамические свойства ионов в связи с изменением концентрации, следует рассмотреть, как изменяется с концентрацией ионная атмосфера. Таким образом, первая задача состоит в том, чтобы объяснить изменение энергии, а вместе с тем и коэффициентов активности с концентрацией с помощью модели распределения зарядов вокруг иона. Вторая задача состоит в том, чтобы с помощью этой же модели объяснить влияние ионного облака на электропроводность. [c.71]

    Каждый ион оказывается как бы в своеобразной атмосфере ионов другого знака. Поэтому раствор сильного электролита можно рассматривать как систему равномерно распределенных по всему объему сосуда разноименных ионов, каждый из которых находится в центре силового электрического поля, создаваемого окружающими ионами. Это обусловливает довольно сложные взаимоотношения между частицами, которые влияют на ряд свойств раствора. Так, при приложении внешнего электрического поля ионная атмосфера смещается к одному полюсу, а находящийся в центре ее ион противоположного знака — к другому. Силы электростатического притяжения между ионом и атмосферой препятствуют их движению в противоположные стороны кроме того, увлекаемая ионами сольватная оболочка также тормозит их движение. Все это замедляет передвижение ионов в растворах сильных электролитов (рис. 12). [c.33]

    Как можно видеть, толщина ионной атмосферы зависит от температуры, диэлектрической проницаемости растворителя, числа ионов и их заряда. Величина х имеет больщое значение в теории растворов электролитов, она непосредственно связана с термодинамическими свойствами ионов. [c.142]


    Это неподчинение объясняет теория сильных электролитов. Согласно этой теории сильные электролиты н водных растворах нацело диссоциируют на ионы. Между противоположно заряженными ионами действуют электростатические силы притяжения и отталкивания. В результате каждый нон окружается ионной атмосферой , состоящей из ионов противоположного заряда. Меж-ионные силы влияют на все свойства электролита. Они понижают подвижность ионов, и поэтому в реакциях ионы проявляют себя так, будто их концентрация меньше действительной концентрации, определяемой аналитически. [c.146]

    Любую коллоидную частицу можно представить состоящей из одного гигантского полииона и множества противоионов. Поэтому любой золь (если он не находится в изоэлектрическом состоянии) является коллоидным электролитом. Действительно, свойства золей непрерывно переходят в свойства растворов электролитов, например электрофорез — в электромиграцию (движение ионов в электрическом поле). Двойной электрический слой в процессе предельного диспергирования превращается в ионную атмосферу, характеризующуюся теми же основными закономерностями трактовка Гуи переходит при этом в представления теории сильных электролитов Дебая — Хюккеля. С такими проявлениями глубокой общности свойств коллоидных и гомогенных растворов мы уже встречались. [c.321]

    Можно ожидать (см. петит ниже), что диффузность, т. е. большая размытость слоя противоионов по сравнению с моделью Гельмгольца изменит только характер распределения скоростей смещения отдельных слоев жидкости в непосредственной близости к поверхности твердой фазы. При этом наблюдаемая на опыте скорость перемещения фаз относительно друг друга uo, которая, как и в модели Гельмгольца, определяется величиной фо, существенно не изменится (кривая 2 стремится к тому же пределу, что и Г)- На это, в частности, указывает то обстоятельство, что единственный параметр, определяющий геометрические характеристики двойного слоя в модели Гельмгольца, — расстояние между обкладками конденсатора б — не входит в конечное выражение. (Если какой-либо параметр, используемый при выводе, не входит в конечное соотношение, это обычно означает, что свойство системы, отражаемое этим параметром, не влияет на рассматриваемое явление.) В качестве наиболее близкого по физическому смыслу значения расстояния б может быть использована толщина ионной атмосферы б=1/> . [c.189]

    Наряду с неорганическими частицами дисперсной фазы электрофорезу могут подвергаться и заряженные макромолекулы (и их агрегаты), в частности белковые молекулы. При этом, в зависимости от состава среды, прежде всего от pH, величина заряда, а. также и его знак могут быть различными (то же самое относится и к ряду неорганических золей, например амфотерных гидроксидов). В свою очередь заряд влияет на форму макромолекулы. Если макромолекула образует рыхлый клубок, в котором расстояние между ионами соизмеримо с толщиной ионной атмосферы, то движение макромолекулы может сопровождаться просачиванием дисперсионной среды через нее. Макромолекулы (и их агрегаты), образующие плотные глобулы, вполне подобны по своим электрофоретическим свойствам обычным коллоидным частицам. [c.194]

    Макромолекула полиэлектролита связывает противоионы. Поэтому полиион при взаимодействии с другими полиионами ведет себя как нейтральная система, что находит свое отражение в значениях второго вириального коэффициента, определяемого методом осмометрии (см. стр. 147) или светорассеяния (см. стр. 158) [80]. Противоионы могут специфически связываться ионизованными группами полиэлектролита — такое связывание зависит от химической природы макроиона и малого иона. Следует отличать это связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания — образования ионной атмосферы, В солевой связи противоион находится на значительно меньшем расстоянии от полииона, чем то, на которое могут приближаться подвижные противоионы. Специфическое связывание противоионов определяет ионообменные свойства полиэлектролитов. Эти свойства имеют важные практические применения. Сшитые поперечными связями нерастворимые полиэлектролиты, набухающие в воде и других жидкостях, применяются в качестве ионообменных смол или ионитов [81], Иониты оказываются способ-и1 1ми сорбировать определенные ионы из растворов, что находит [c.170]

    ОБЩИЕ ОСНОВЫ ТЕОРИИ МЕЖДУИОННОГО ПРИТЯЖЕНИЯ И СВОЙСТВА ИОННЫХ АТМОСФЕР [c.33]

    Введенное Дебаем понятие ионной атмосферы и использование им уравнения Пуассона позволили дать остроумную и простую математическую трактовку, из которой вытекали точные соотношения, позволявшие количественно предсказывать свойства разбавленных растворов электролитов. [c.33]

    Первый член справа в этом уравнении представляет собой потенциал на расстоянии г от отдельного иона в среде с диэлектрической постоянной В. Второй член равен потенциалу ионной атмосферы. Первый член не входит в выражения для зависимости термодинамических свойств электролитов от концентрации ионов. Однако в некоторых случаях, когда нужно учитывать влияние изменения растворителя, первый член сохраняется. Так как 1—е-") приближается к величине хг при малых значениях хг, то потенциал иона и его атмосферы в этом случае становится равным [c.42]

    Представления об образовании ионных атмосфер в растворах электролитов, нашедшие отражение в теории Дебая — Хюккеля, объяснили многие свойства электролитных растворов. Однако ряд экспериментальных фактов не объяснялся этой теорией. Непонятной была, например, аномальная электрическая проводимость, впервые обнаруженная Каблуковым (1890) при исследовании растворов НС1 в амиловом спирте. Обычно удельная электропроводность концентрированных растворов уменьшается с добавлением электролита. Каблуков нашел, что начиная с некоторой высокой концентрации электрическая проводимость раствора НС1 в амиловом спирте с дальнейшим ростом концентрации не уменьшалась, а возрастала. Впоследствии такого рода концентрационная зависимость электрической проводимости была обнаружена во многих других системах, включая водные растворы (например, растворы AgNOa). [c.445]

    Наконец, особые свойства растворов сильных электролитон могут быть объяснены, исходя из представления об межион-ном взаимодействии, в результате которого вокруг каждого отдельного иона в растворе образуется ионное облако из противоположно заряженных ионов — ионная атмосфера. Это представление лежит в основе теории сильных электролитов. [c.286]

    Все сказанное выше о сольватации ионов относится к очень разбавленным растворам. При переходе к растворам средних и высоких концентраций картина взаимодействий значительно усложняется. Здесь на взаимодействие ионов в растворителем накладывается их взаимодействие друг с другом. При небольших концентрациях электролита оно проявляется в образовании около ионов ионных атмосфер из ионов противоположного знака. В более концентрированных растворах образуются ассоциаты из сольватированных ионов — ионные пары, тройники и др. Наконец, в очень концентрированных растворах растворителя не хватает для формирования сольватных оболочек и ионы десольватированы. В связи с этим К. П. Мищенко и А. М. Сухотиным в 1953 г. было введено понятие о границе полной сольватации — той концентрации раствора, когда растворителя еще достаточно для образования первых сольватных сфер. Переход через границу полной сольватации ведет к резкому изменению многих свойств растворов. [c.285]

    Если две частицы дисперсной фазы сблизить на достаточно короткое расстояние, то далее они будут удерживаться друг около друга силами ван-дер-ваальсова притяжения, которые весьма существенны для частиц большого размера. Это должно привести к их слипанию в случае твердой дисперсной фазы или к слиянию — в случае жидкой и газообразной. Если бы это происходило при каждой встрече частиц, то расслаивание эмульсий и коагуляция суспензий происходили бы за очень короткое время. Однако это случается далеко не всегда в силу наличия у частиц дисперсной фазы электрического заряда. Например, золь Ре(ОН)з проявляет основные свойства и присоединяет протоны, в результате чего коллоидная частица Ре(ОН)з приобретает положительный заряд. Частицы коллоидного золота адсорбируют на своей поверхности многие анионы и заряжаются отрицательно. Заряд на поверхности коллоидных частиц скомпенсирован ионами противоположного знака (противоионами), которые под действием электростатического поля этих частиц концентрируются вблизи поверхности, образуя ионную атмосферу (см. 13.2). Заряженную поверхность вместе с примыкающей к ней ионной атмосферой называют двойным электрическим слоем. Поскольку все одинаковые по своей химической природе коллоидные частицы имеют одноименный заряд, между их ионными атмосферами действуют силы электростатического отталкивания. Это препятствует их сближению до расстояний, на которых ван-дер-ваальсово притяжение пересиливает электростатическое отталкивание и создаются условия, благоприятные для слипания частиц. [c.321]

    В растворе сильного электролита картина взаимодействия между частицами и между электрическими полями ионов необычайно сложна. Поэтому расчеты свойств раствора можно произвести, лишь вводя ряд упрощений. В частности, в теории растворов сильных электролитов, развитой Дебаем и Гюккелем (1923), исходят из того, что взаимодействие каждого иона с соседними заменяется взаимодействие одного- (центрального) иона с окружающими ионами другого знака (противотнами). Скопление около центрального иона ионов противоположного знака обусловлено электростатиче- скими силами притяжения и приводит к обра- - зованию так называемой ионной атмосферы (рис. 73). С помощью законов электростатики можно вывести уравнение изменения электри-ческого потенциала в пределах ионной атмо-сферы и связать его с активностью электро-лита. Таким путем была получена формула (XVI.2). Плотность ионной атмосферы, ее ра- Рис. 73. Образование диус, скорость возникновения и разрушения ионной атмосферы вок- [c.221]

    Особенности поведения растворов сильных электролитов и их свойства объясняются теорией межионного взаимодействия, которая была развита Дебаем и Гюккелем (1923). Согласно этой теории, противоположно заряженные ионы в растворе притягиваются друг, к другу. Электростатическое взаимодействие ме.жду. ионами стремится создать такое " их расположение в растворе, при котором отрицательные ионы окружают себя атмосферой положительных ионов, и наоборот. В результате некоторой упорядоченности распределения ионов в растворе около любого иона концентрируются ионы противоположного знака. Суммарный заряд сферы, в центре которой находится произвольно выбранный ион, имеет избыточный заряд, противоположный по знаку заряда центрального иона. Тепловое движение постоянно изменяет картину распределения ионов в этой сфере. В нее входят и ее покидают ионы различных знаков, вследствие чего относительное число катионов и анионов в сфере постоянно изменяется. Поскольку радиус ионной атмосферы довольно велик, атмосферы двух соседних ионов пересекаются. В этом случае каждый ион в данный момент входит в состав одной илн нескольких ионных атмосфер других ионов. Исходя из нред-сгавлений о полной диссоциации сильных электролитов следовало ожидать, что коэффициент I для электролита, диссоциирующего на два иона, должен равняться двум не только в разбавленных, но и в достаточно концентрированных растворах. Опыты показали, однако, чго коэффициент / в растворах сильных электролитов, так же как и в растворах слабых,- зависит от концентрации раствора, уменьшаясь с увеличением концентрации. Такая зависи- [c.239]

    В реальном растворе электролита идет борьба двух сил. Электрические силы стремятся создать такое распределение, при котором каждый ион окружен только ионами противоположного знака. Однако этому противодействует хаотическое тепловое движение ионов, приводящее к беспорядочному распределению. Эти противоположные тенденции приводят к тому, что около каждого иона образуется своеобразная ионная атмосфера, в которой преобладают ионы, противоположно заряженные по отношению к центральному иону. При этом каждый из ионов, составляющих ионную атмосферу, в свою очередь, сам является центром своей ионной атмосферы. Молекулы растворителя находятся в пространстве между ионами атмосферы и не только заполняют это пространство, но и взаимодействуют с ними, образуя сольваты, что отражается как на свойствах ионов, так и на свойствах самих молекул растворителей (рис. 14.4). Очевидно, в случае сильных электролитов ионная атмосфера сгущена с разбавлением ионная атмосфера становится все более диффузной, так как силы теплового характера начинают превалировать над электростатическими силами. Именно поэтому разбавленные растворы электролитов хорошо описываются классической теорией. [c.292]

    Перед тем как использовать эти результаты, необходимо выяснить. имеет лн выражение для расстояния экранирования, или де-баевского расстояния, Го. правдоподобные свойства. Витно, что оно увеличивается с увеличением температуры. Это понятно, так как тепловое движение разрушает иониую атмосферу и, следовательно, ослабляет ее экранирующий эффект. Дебаевское расстояние увеличивается с увеличением диэлектрической проницаемости. Это согласуется с уменьшением ион-ионного взаимодействия, происходящим при увеличении Кт . центральный нон не в состоянии увлекать за собой атмосферу, если Кт велика. Дебаевское рассто-яиие уменьшается с увеличением концентрации ионов. За концентрационную зависимость отвечает ионная сила /, которая возрастает с ростом концентрацин. Например, в случае (1,1)-электролита (для которого 2+= п 12-1 = 1) ноннзя сила /=- (т-- 1п ) = [c.356]

    Предлагаемая читателю книга посвящена дальнодействующим поверхнрстным силам, влияние которых не ограничено монослоем, а распространяется на десятки и сотни прилегающих к поверхностям слоев молекул. Переход от господствовавшей ранее концепции близкодействия к концепции дальнодействия означал одновременно переход от мира двух измерений к несравненно более богатому физико-химическими следствиями миру трех измерений. Этот переход был длительным и многоступенчатым. Начало было положено теорией Гуи—Чепмана диффузных ионных атмосфер, которая совместно с теорией молекулярных сил Лондона послужила основой для развития (начиная с 1937 г.) теории устойчивости лиофобных коллоидов Дерягина—Ландау—Фервея—Овербека (ДЛФО). В дальнейшем эта теория была усовершенствована за счет введения сил иного рода и обобщена путем ее приложения к взаимодействию неодинаковых частиц (гетерокоагуляция). Теория ДЛФО лежит в основе таких крупных практических проблем, как флотация, водоочистка, адгезия частиц, управление свойствами дисперсных структур, массообмен в пористых телах и взаимодействие биологических клеток. [c.3]

    Существуют как твердые макроионы (глобулярные белки и др.), так и гибкие полиэлектролитные цепи. Очевидно, что свойства таких макромолекул существенно зависят от взаимодействия содержащихся в них зарядов. Величины этих зарядов определяются степенями диссоциации ионогепных групп и окружающей их ионной атмосферой. [c.84]

    Конформация гибкой полиэлектролитной цепи определяется условием минимума для суммы конформационной и электрической свободной энергий. Естественно, что наличие одноименных зарядов в цепи означает их взаимное отталкивание, которое приводит к развертыванию клубка, к увеличению его размеров. Электростатическая свободная энергия клубка вычисляется с учетом ионной атмосферы. Флори построил теорию размеров цепей полиэлектролитов, сходную с предложенной им же теорией объемных эффектов (с. 77). Предполагается, что клубок вместе с иммобилизованным им растворителем в целом электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую цепь — происходит лишь раздувание клубка. Это согласуется с экспериментальными дап-выми—с зависимостью характеристической вязкости [г ] от м. м. В более строгой статистической теории заряженных макромолекул учитывается, что из-за экранирования противоиоиами заря женные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном их сближении в результате флуктуаций. Из этой теории следует, что конформационные свойства заряженных макромолекул занимают [c.84]

    Противоионы могут связываться заряженными группами полиэлектролита специфически — такое связывание зависит от химической природы и макроиона, и малого иона. Следует отличать это специфическое связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания — образования ионной атмосферы. В солевой связи противоион находится на значительно меньшем расстоянии от заряженной группы полииона, чем расстояние между этой группой и подвижными противоиоиами. Специфическое связывание противоионов определяет ионообменные свойства полиэлектролитов, имеющие важные практические применения. Сшитые поперечными связями нерастворимые полиэлектролиты, набухающие в воде или в других жидких средах, применяются в качестве ионообменных смол или ионитов. Иониты способны сорбировать определенные ионы из растворов, что находит применение при [c.85]


Смотреть страницы где упоминается термин Ионные атмосферы, свойства: [c.84]    [c.146]    [c.439]    [c.440]    [c.439]    [c.440]    [c.48]    [c.140]    [c.145]   
Физическая химия растворов электролитов (1950) -- [ c.33 ]

Физическая химия растворов электролитов (1952) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Иониты Ионная атмосфера

Ионная атмосфера

Ионные атмосферы, свойства влияние на электропроводност

Ионные атмосферы, свойства констант диссоциации

Ионные атмосферы, свойства таблица

Ионные атмосферы, свойства теплот диссоциации

Ионные атмосферы, свойства электропроводности, таблиц

Ионные атмосферы, свойства электропроводность

Общие основы теории междуионного притяжения и свойства ионных атмосфер

Термодинамические свойства ионных атмосфер,

Уравнения, выведенные в гл. III, для вычисления термодинамических функций из электростатических свойств ионных атмосфер

Функции абсолютной температуры, таблиц функции термодинамические, электростатических свойств ионных атмосфер

Функции термодинамические, электростатических свойств ионных атмосфер

Функции термодинамические, электростатических свойств ионных атмосфер вычисление



© 2025 chem21.info Реклама на сайте