Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты и инсулин

    Важнейшим этапом регуляции синтеза липидов служит активация ацетил-СоА — карбоксилазы цитратом (гл. 8, разд. В,2 рис. 11-1). Помимо этого, синтез и распад триглицеридов, накапливающихся в печени и жировой ткани, находятся под сложным гормональным контролем. Так, адреналин и глюкагон, стимулируя образование с АМР, вызывают активацию липаз, которые расщепляют триглицериды таким путем происходит мобилизация жировых депо. С другой стороны, инсулин способствует накоплению жиров этот эффект обусловлен не только увеличением активности ферментов липогенеза, и в первую очередь АТР-зависимого цитратрасщепляющего фермента [уравнение (7-70)], но также ингибированием образования с АМР и, как следствие, подавлением липолиза в клетках. Наконец, сывороточная липопротеидлипаза. (называемая также осветляющим фактором ) расщепляет липиды, входящие в состав сывороточных липопротеидов, в процессе прохождения последних через мелкие капилляры. Освобождающиеся при этоМ жирные кислоты поступают в клетки, где вновь включаются в состав-липидов [44]. [c.556]


    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]

    Несомненно, что с химической точки зрения Zn + в ферментах выполняет роль льюисовской кислоты, создающей локализованный центр положительного заряда вблизи нуклеофильного центра субстрата . Эта функция иона металла обсуждается в разд. Г,4 при рассмотрении карбоксипептидазы (рис. 7-3). Ионы цинка необходимы также для функционирования термолизина (разд. Г,4), дипептидаз, щелочной фосфатазы (разд. Д,1), РНК-полимераз, ДНК-полимераз , карбоангидразы (рис. 7-8), альдолаз класса П (разд. К,2, в), некоторых алкогольдегидрогеназ (гл. 8, разд. 3,2) и супероксид-дисмутазы (дополнение 10-3). Известно, что цинк связывается и с гексамерами инсулина (рис. 4-13,В). [c.142]


    Цинк важен для всех форм жизни. Он содержится в организмах в сравнительно больших количествах, особенно много его в тканях морских животных. Цинк необходим для нормального функционирования клеточных систем. Он входит в состав фермента, который ускоряет разложение гидрокарбонатов в крови и тем самым обеспечивает необходимую скорость процессам дыхания и газообмена. Цинк входит также в состав гормона инсулина, который регулирует уровень сахара в крови. [c.421]

    Все многообразие белков образовано 20 различными аминокислотами при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности в резу.пьтате уже точно установлено строение ряда белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков как уже указывалось, в 50—60-х годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. [c.586]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    Гормоны — вещестиа, ныделяемые железами нпутренней секреции, — регуляторы важнейших фупкцш" организма животных и человека (так, инсулин—гормон поджелудочной железы, — регулятор сахарного обмена). Ферменты— см. стр. 180, [c.451]

    Процесс развития животного из оплодотворенного яйца — одно из наиболее замечательных биологических явлений. Из первых, очень сходных между собой эмбриональных клеток в ходе всего нескольких клеточных делений возникают дифференцированные органы и ткани, такие, как печень, мозг, почки, кожа и эритроциты. Дифференцированные клетки характеризуются, как правило, высокоспециализированными биохимическими свойствами. Так, эритроциты содержат гемоглобин, тогда как в мышечных клетках в больших количествах образуются миозин и актин. В эндокринных клетках поджелудочной железы синтезируются инсулин и глюкагон, а в экзокринных-—пищеварительные ферменты, которые секретируются в пищеварительный тракт. В целом считается, что в клетках специализированных тканей одновременно транскрибируется не более 10% общего количества генов (исключение составляет ткань мозга см. разд. Б, 8). Методом химического анализа четко установлено, что специализированные клетки содержат нормальное количество ДНК, т. е. полный набор генов, но 90% этого количества не функционирует. [c.352]

    Инсулин получил широкое применение в клинике при лечении сахарного диабета. Его применяют также при лечении некоторых других заболеваний. Инсулин вводят подкожно при введении через рот он разрушается протеолитическими ферментами. Инсулин легко соединяется с щелочными белками (протаминами) с образованием стойких комплексов. Эти комплексы обладают более продолжительным действием в организме, чем свободный инсулин (депо-препараты). [c.150]

    Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Полностью определена химическая структура нескольких белков гормона инсулина (см, рис. 53), фермента, расщепляющего нуклеиновые кислоты, — рибонуклеазы (см. рис. 54), фермента лизоцима (рис. 56), [c.375]

    К середине 1940-х годов пептидная теория белков Фишера и Вальд-шмидт-Лейтца была почти повсеместно принята. Встал вопрос о точном знании деталей химического строения, т.е. о конкретном порядке расположения аминокислот в белковых цепях. Впервые такое сложное исследование удалось провести в течение десятилетия (1945-1954 гг.) ф. Сенгеру, определившему аминокислотную последовательность инсулина. Вторым белком была рибонуклеаза А. Полная структура этого фермента расшифрована С. Муром, К. Хирсом и У. Стейном (1960 г.). Вскоре идентификация химичекого строения белков стала производиться с помощью автоматических секвенаторов и приобрела рутинный характер. Однако достижения в решении первой фундаментальной задачи проблемы белка не принесли удовлетворения. Сначала не вызывало сомнений, что химические и физические свойства белков получат свое объяснение, как только станет известно химическое строение их молекул. Однако основанная на опыте всей органической химии и биохимии надежда на то, что установление химического типа и строения молекул окажется достаточным для понимания хотя бы в общих чертах их специфического функционирования, не оправдалась. Тем самым определение структуры из конечной цели исследования превратилось в необходимый для последующего изучения белков начальный этап. Утвердилась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса при строгой специфичности его отдельных представителей связаны с особенностями пространственных структур белковых молекул. [c.67]


    В настоящее время путем синтеза получают множество органических соединений. Более того, оказалось, что многие органические вещества гораздо проще и дешевле получать синтетически, чем выделять из природных продуктов. Наибольшим успехом химии 50—бО-х годов XX века явился первый синтез простых белков — гормона инсулина и фермента рибонуклеазы. Таким образом доказана возможность синтетического получения даже белков — наиболее сложных органических веществ, являющихся непременными участниками жизненных процессов. [c.549]

    ГЛЮКОЗЫ в крови и появлением в моче сахара и ацетоновых тел, являющихся продуктами неполного окисления углеводов (ацетоуксусная и р-оксимасляная кислоты, ацетон). Бантинг и Мак-Леод предложили в 1921 г. метод выделения из поджелудочной железы быка концентрированного активного экстракта, пригодного для лечения диабета. При выделении были использованы специальные приемы для защиты гормона от расщепления ферментом, присутствующим в железе. В 1926 г. Абель выделил кристаллический инсулин методом осаждения в изоэлектрической точке и показал, что в нем содержится 0,52% цинка. [c.698]

    Биосинтез Г, осуществляется с помощью ферментов гли-козилтрансфераз. Исходным в-вом для синтеза может служить молекула олигосахарида, состоящая из остатков глюкозы, нлн белок, глюкозилированный в результате переноса на него остатка глюкозы с уридиндифосфатглюкозы. Г. расщепляется с помощью фермента фосфорилазы, переносящей остаток глюкозы на фосфорную к-ту с образованием а-0-глюкозо-1-фосфата, и разл. гидролаз (напр., ot-глюкози-дазы), катализирующих гидролиз связей 1 - 4 и 1 - 6. Распад и синтез Г. регулируется гормонами надпочечников и поджелудочной железы, напр, инсулином и адреналином. [c.575]

    Карбоангидраза, пептидазы, фосфатазы, НАД-ферменты, инсулин [c.95]

    В клетках эукариот полицистронные матрицы часто транслируются целиком, а образующаяся общая полипептидная цепь в дальнейшем разрезается на индивидуальные полипептиды. У организмов этого типа широко распространен также синтез белков в виде более длинных предшественников, которые затем укорачиваются, следовательно, как и в случае синтеза РНК, молекулы проходят стадию созревания , или процессинга , характерную для многих пищеварительных ферментов, инсулина, коллагена и других белков. [c.45]

    Несмотря на большое число исследований, чисто химический аспект действия инсулина остается неясным - . Обычно считается, что гормон действует на плазматические мембраны всех тканей, вызывая заметные изменения проницаемости, что поиводит к возрастанию поглощения глюкозы, различных ионов и других веществ. Такого рода изменения проницаемости могут обусловить сильное влияние инсулина на важнейшие процессы биосинтеза имеет место, в частности, повышение синтеза гликогена, липидов и белков. В то же время процессы катаболизма подавляются и активность катаболических ферментов, например глюкозо-6-фосфатазы, снижается. Ключом к пониманию действия инсулина может явиться выяснение вопроса о природе его вторичного посредника , аналогичного по своему действию сАМР. Высказывались предположения, что вторичным посредником для инсулина является сАМР, однако более вероятно, что эту роль выполняет какой-то ион, возможно К+ . [c.505]

    Протеаза плесени и субтилизин. Протеаза плесени, выделенная в кристаллическом виде из фильтратов культуры А. огу-гае, оказалась во много раз активнее папаина при гидролизе казеина и гемоглобина [66]. Найдено, что этот фермент приводит к более глубокому гидролизу цепей окисленного инсулина, чем все рассмотренные выше ферменты [269]. Связи, разрываемые протеазой плесени, показаны на рис. 1 и 2. [c.211]

    Среди них наибольший интерес вызывают датчики на основе кислородного электрода. В качестве ферментных меток обычно применяют глюкозоксидазу или каталазу. На этом принципе, например, работает иммуноферментный амперометрический датчик для определения инсулина. Антитела инсулина иммобилизуют на капроновой сетке и закрепляют ее на поверхности кислородного электрода. При внесении электрода в анализируемый раствор антитела взаимодействуют с инсулином, к которому пришита глюкозоксидаза, с образованием комплексов АТ-инсулин-Е, где Е - фермент. Когда в растворе, наряду с меченым инсулином, присутствуют молекулы инсулина без фермента, то количество фермента на электроде будет тем меньше, чем выше концентрация инсулина. При внесении электрода в раствор глюкозы изменение величины тока будет соответствовать концентрации инсулина в анализируемом растворе. Кислородный электрод используется также для определения альбумина в сыворотке крови человека. Основные характеристики некоторых иммуноферментных электродов приведены в табл. 14.3. [c.506]

    Производство мальтозы в нашей стране сдерживается из-за отсутствия некоторых иммобилизованных ферментов. Не определена потребность пищевых отраслей в мальтозе. А между тем мальтоза усваивается организмом без инсулина, не повышает содержание сахара в крови, что важно для страдающих диабетом, не вызывает кариес зубов. [c.150]

    Обмен углеводов. Инсулин стимулирует гликолиз, повышая активность ключевых ферментов глюкокиназы, фосфофруктокиназы и пируваткиназы. В печени он снижает активность глюкозо-6-фос-фатазы. Эти процессы и стимуляция трансмембранного транспорта глюкозы обеспечивают поток глюкозы из крови в клетки. Инсулин стимулирует синтез гликогена за счет активации гликогенсинтазы (дефосфорилирование фермента в форму / — активную) этот процесс сопряжен с активацией фосфодиэстеразы и уменьшением внутриклеточной концентрации цАМФ, а также активацией фосфатазы гликогенсинтетазы. Действие инсулина на транспорт глюкозы, гликолиз, гликогеногенез продолжается секунды-минуты и включает фосфорилирование-дефосфорилирование ферментов. Длительное действие на уровень глюкозы в плазме зависит от ингибирования инсулином глюконеогенеза в печени гормон тормозит синтез ключевого фермента — фосфоенолпируваткарбоксикиназы (путем селективного контроля транскрипции гена, кодирующего мРНК этого фермента). Инсулин — единственный гормон, снижающий содержание глюкозы в крови. [c.391]

    Атомы цинка расположены на оси симметрии 3-го порядка и связаны с тремя имидазольными кольцами гистидинов В-10. Роль атомов цинка не совсем ясна. Гексамеры легко образуют ромбические кристаллы даже внутри панкреатических клеток, синтезирующих инсулин. Структура инсулина воплощает в себе основные особенности строения олигомерных ферментов, обладающих циклической или диэдрической симметрией. Как и в случае гексамера инсулина, центральные части таких молекул часто открыты и торчащие боковые группы аминокислотных остатков (в случае инсулина имидазольные группы) образуют как бы гнезда , в которые могут входить ионы или молекулы, регулирующие активность белков. Однако функциональная роль цинка при действии инсулина остается пока неизвестной. [c.293]

    Принятый метод обозначения мест атаки фермента на субстрат порядковыми номерами остатков не может передать всю сложность состава гидролизатов. Например, в случае цепи А окисленного инсулина инкубирование с пепсином приводит к образованию семи пептидов за счет разрыва четырех связей, указанных ниже  [c.209]

    В области синтеза белковых веществ за последние годы достигнуты блестящие результаты. Помимо полного синтеза антибиотика грамици дина синтезирован инсулин, осуществлен полный синтез фермента рибо-нуклеазы А. Синтезированный фермент имеет 78% активности природного фермента. Синтезирован пептидный фрагмент фермента N-aцeтил-глюкозаминидазы — лизоцима, структура которого была полностью установлена ранее (см. рис. 56). Синтезированный пептидный фрагмент, проявляет до 25% активности природного лизоцима. [c.377]

    Характерной особенностью регуляторных механизмов, зависимых от обратимой модификации белков, является существование специальных ферментов, возвращающих модифицированные белки в их исходное состояние покоя циклический АМР гидролизуется фосфодиэстеразой до АМР, а все образующиеся фосфорилированные белки подвергаются гидролизу под действием фосфопротеинфосфатазы, в результате которого происходит удаление фосфатных групп [50]. Эти релаксационные реакции обозначены на рис. 11-10 пунктирными линиями. Действие фосфатаз также, несомненно, подвержено регуляции, однако о соответствующих механизмах нам мало что известно. Инсулин же при его введении в организм крыс, больных диабетом, стимулирует, вероятно, непрямым путем быстрое превращение неактивной формы (D-формы) гликогенсинтетазы печени в активную (1-форму) [51]. [c.509]

    Создание лекарств дюрантного (продленного) типа действия — давняя мечта клиницистов. Сократить число приемов медикамента, обеспечить поддержание равномерной концентрации препарата в крови — значит уменьшить число возможных побочных реакций и сделать само назначение многих препаратов более гуманным. Это особенно относится к случаям заместительной терапии препаратами гормонов, ферментов (инсулин, стероиды и т. д.). Существует много методов удлинения действия препаратов, каждый из которых имеет положительные и отрицательные стороны. Выбором наиболее рациональных из них применительно к конкретному лекарственному веществу и способу назначения, а также разработкой новых заняты в настоящее время большие коллективы ученых в разных странах мира. [c.105]

    Некоторые пептиды обладают гормональным действием. Эти гормоны синтезируются в разных органах - гипоталамусе, гипофизе, поджелудочной железе, плазме кропи. Пептидные гормоны, как и все гормоны, выполняют роль регуляторов активности органов и клеток, служа в основном для изменения скорости синтеза ферментов, биокатализа и проницаемости биомембран. Их синтез железами внутренней секреции и выброс в кровь находится под контролем нервной системы. Инсулин представляет собой димер, в котором унэйкозапептид связан с трикозапепти-дом двумя дисульфидными мостиками. Он вырабатывается у человека поджелудочной железой и служит регулятором уровня [c.39]

    Работы по генно-инженерному получению инсулина начались около 20 лет назад. В 1978 г. появилось сообщение о получении штамма кишечной палочки, продуцирующего крысиный проинсулин (США). В этом же году были синтезированы отдельные цепи человеческого инсулина посредством экспрессии их синтетических генов в клетках Е. соИ (рис. 5.11). Каждый из полученных синтетических генов подстраивался к 3 -концу гена фермента -галактозидазы и вводился в векторную плазмиду (pBR322). Клетки Е. соИ, трансформированные такими рекомбинантными плазмидами, производили гибридные (химерные) белки, состоящие из фрагмента -галактозидазы и А или В пептида инсулина, присоединенного к ней через остаток метионина. При обработке химерного белка бромцианом пептид освобождается. Однако замыкание дисульфидных мостиков между образованными цепями инсулина происходило с трудом. [c.133]

    Неоспоримое преимущество этого метода по сравнению с классическими методами синтеза пептидов состоит в том, что ни на одной из стадий он не требует выделения растущей полипептидной цепи. В силу чрезвычайно низкой растворимости аддукт пептида и полимера легко отмывается после каждой реакции от побочных продуктов, растворителей и избытка реагентов без потери пептида, после чего аддукт готов к следующей реакции- В настоящее время метод автоматизирован, и запрограммированные аминокислотные синтезаторы без труда могут присоединить шесть аминокислот к растущей полипептидной цепи за 24 ч. Эти приборы добавляют реактивы в падлен<ащей последовательности, меняют условия реакций, обеспечивают необходимое время реакции, отмывают побочные продукты, после чего начинают всю операцию сначала. При помощи метода ТФСП были синтезированы инсулин и фермент рибонуклеаза, состоящий нз 124 аминокислот. [c.406]

    В 20-40-е гг. получили развитие физ.-хим. методы анализа Б. Седиментациоиными и диффузионными методами были определены мол. массы многих Б., получены данные о сферич. форме молекул глобулярных Б. (Т. Сведберг, 1926), выполнены первые рентгеноструктурные анализы аминокислот и пептидов (Дж. Д. Бернал, 1931), разработаны хроматографич. методы анализа (А. Мартин, Р. Синг, 1944). Существенно расширились представления о функциональной роли Б. был выделен первый белковый гормон-инсулин (Ф. Бантинг, Ч. Г. Бест, i922 антитела были идентифицированы как фракция у-глобулинов (1939) и тем самым обнаружена новая ф-ция Б.-защитная. Важным этапом явилось открытие ферментативной ф-ции мышечного миозина (В.А. Энгельгардт, М. Н. Любимова, 1939) и получение первьк кристаллич. ферментов (уреазы-Дж. Б. Самнер, 1926 пепсина-Дж.X. Нортроп, 1929 лизоцима-Э. П. Абрахам, Р. Робинсон, 1937). [c.248]

    Чрезвычайно широкая распространенность Ф.-к. в тканях животных, растений и микроорганизмов определяется ключевой ролью фермента в образовании глюкозы из физиол. предшественника - пировиноградной к-ты. Количество фермента в тканях млекопитающих регулируется гормонами шюкагон увеличивает синтез Ф.-к., а инсулин - снижает. [c.140]

    Специфичность обеих экэопептидаз различна. Карбоксипептидазой А, впервые использованной Ленсом в 1949 г. для определения С-концевых остатков в инсулине, отщепляются все аминокислоты, кроме Lys, Arg, Pro-и His. Карбоксипептидаза В отщепляет Lys, Arg, Orn и S-аминоэтилцистеин. Оба фермента взаимно дополняют друг друга и, как правило, применяются в комбинации. [c.368]

    Установлено [27], что частично очищенный папаин способен атаковать синтетические субстраты амидного и пептидного типа. Аналогичными свойствами обладает и кристаллический фермент [178], который вызывает расщепление, хотя и с весьма различными скоростями, всех синтетических субстратов для трипсина, пепсина, химотрипсина, карбоксипепти-дазы и пептидаз. Из известных в настоящее время субстратов папаина наиболее чувствительным оказался бензоил-/-арги-ниламид. Атака фермента иа фракцию А окисленного инсулина свидетельствует о широком спектре гидролитического действия, напоминающем действие пепсина, хотя степень разрыва различных связей этими ферментами весьма различна. [c.210]


Смотреть страницы где упоминается термин Ферменты и инсулин: [c.451]    [c.50]    [c.480]    [c.578]    [c.590]    [c.598]    [c.104]    [c.522]    [c.184]    [c.505]    [c.234]    [c.183]    [c.185]    [c.187]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.59 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Инсулин

Инсулинома



© 2025 chem21.info Реклама на сайте