Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны адсорбция

    Диффузия через непористые мембраны Адсорбция Выпаривание Кристаллизация Экстракция Диализ, электродиализ Адсорбция [c.473]

    Рис. 1.9 демонстрирует влияние капиллярного осмоса на течение растворов через обратноосмотические мембраны под действием перепада гидростатического давления АР. В этих опытах совместно проявляются оба эффекта обратный осмос и капиллярный осмос. Вследствие пониженной (из-за отрицательной адсорбции) концентрации раствора в порах при фильтрации возникает градиент концентрации раствора (обратный осмос) концентрация вытекающего раствора С/ ниже концентрации раствора Со, подаваемого на вход тонкопористой мембраны. Возникающая при этом разность концентраций АС вызывает капиллярно-осмотическое течение раствора, наклады- [c.25]


    Выражение (9.43) позволяет высказать предположения о возможном механизме преодоления сил структурного отталкивания в биологических системах в процессе слияния мембран. Известно, что слияние мембран происходит лишь в том случае, когда в растворе, омывающем мембраны, в достаточном количестве присутствуют ионы Са + [430]. Одна из особенностей взаимодействия этих ионов с фосфолипидными бислоями заключается в том, что ионы Са + могут легко связываться с полярными головками фосфолипидных молекул и способны соединять две такие молекулы, образуя между ними кальциевые мостики [430]. Следовательно, адсорбция ионов Са + на поверхности бислоя приводит к стабилизации, цементированию его структуры. Другая особенность связана с тем, что ионы Са +, проникая в область полярных головок бислоя, вытесняют оттуда молекулы воды, т. е. дегидратируют поверхности бислоя [460]. [c.167]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    Вид зависимости Ф,т(2) и величина Фг-т " могут быть определены, если известны параметры силового поля молекулы газа аи и б(г [13] и поверхностного атома (молекулы) матрицы мембраны. В простейших случаях (0- 0) уравнение изотермы адсорбции имеет вид [2] [c.51]

    Подытоживая сказанное о поверхностных явлениях в пористых средах, можно утверждать, что в результате равновесного взаимодействия матрицы пористой мембраны и газовой смеси компоненты последней могут находиться в трех различных состояниях объемной газовой фазы, свойства которой определяются ее составом и внешними параметрами (температура, давление и внешнее силовое поле) адсорбированной фазы, состав которой определяется уравнением изотермы адсорбции при известном составе объемной газовой фазы (адсорбированную пленку можно рассматривать как жидкость в силовом поле, характеризуемом адсорбционным потенциалом) конденсированной объемной фазы, находящейся под действием силового поля, определяемого капиллярным потенциалом. [c.53]


    НЫХ мембранах, где имеет место векторное сопряжение процессов кнудсеновской и поверхностной диффузии, а также векторно-скалярное сопряжение процессов сорбции и диффузии. Будем считать скорость процессов адсорбции мгновенной и потому состояния газовой и сорбированной фаз локально-равновесными в любом сечении мембраны. Сопряжение 2-х векторных процессов диффузии через сорбцию приводит, как было показано выше, к изменению проницаемости пористых мембран. [c.68]

    Процессы разделения жидких систем играют важную роль во многих отраслях народного хозяйства. Для осуществления этих процессов уже давно применяют разнообразные способы перегонку и ректификацию, абсорбцию и адсорбцию, экстракцию и др. Однако природа за миллионы лет эволюции живых организмов выработала наиболее универсальный и совершенный метод разделения с использованием полупроницаемых мембран. Действительно, биологические мембраны обеспечивают направленный перенос необходимых организму веществ из внешней среды в клетку, и наоборот. Без мембран невозможны были бы дыхание, кроветворение, синтез белка, усвоение пищи, удаление отходов и другие процессы. [c.13]

    Различные взаимодействия между растворителем и растворенным веществом, растворителем и мембраной, растворенным веществом и мембраной еще больше усложняют выбор полимера. Если взаимодействие между растворенным веществом и мембраной сильное, а взаимодействие между растворителем и растворенным веществом слабое, может произойти избирательная адсорбция растворенного вещества мембраной, ведущая к ее закупориванию или набуханию. В любом случае проницаемость мембраны и ее селективность по мере адсорбции могут быстро ухудшаться. [c.70]

    Как известно, интервал pH, в котором ацетатцеллюлозные мембраны могут использоваться, ограничен 3<рН<8. Поэтому при обработке агрессивных растворов конкуренцию динамическим мембранам могут составить только новые типы синтетических мембран. В среднем проницаемость динамических мембран оказывается выше, чем у лучших образцов полимерных мембран. Это объясняется тем, что адсорбция добавок происходит только на поверхности пористой структуры со стороны прикладываемого давления, подтверждением чему являются исследования срезов подложки под электронным микроскопом. Толшина адсорбционного слоя по исходному веществу при этом. мала. Так, для [c.91]

    Для выделения н-алканов можно применять жидкие мембраны [5С5, газовую хроматографию [51], адсорбцию на угле [52], термодиффузионное разделение. [c.258]

    Проблема извлечения гелия сводится к отделению от гелия всех присутствующих компонентов. Традиционно в производстве гелия используются низкотемпературные (криогенные) методы низкотемпературные конденсация, ректификация и адсорбция. Часто в современные поточные схемы производства гелия включают блоки селективной диффузии через мембраны [4]. [c.159]

    Нефтезаводские газы, подлежащие разделению, представляют собой смесь углеводородов с водородом. Основные физические константы водорода и газообразных углеводородов приведены в табл. 12. Водород из этих газов вьщеляют методами глубокого охлаждения, абсорбцией, адсорбцией, диффузией через мембраны с избирательной проницаемостью для водорода. Метод глубокого охлаждения нашел промышленное применение для выделения Нз из водородсодержащих газов. Для получения водорода высокой степени чистоты используют метод короткоцикловой адсорбции на цеолитах. Водород очень высокой степени чистоты в небольших количествах получают диффузией через мембраны из сплавов палладия, проницаемых для водорода, но непроницаемых для других газов и паров. Разрабатываются и полимерные мембраны, обладающие аналогичными свойствами, Метод абсорбции углеводородами с последующей ректификацией, особенно при пониженной температуре, может быть также использован для концентрирования водорода. Этот процесс имеет место в системах гидроочистки (см, стр, 20). [c.42]

    Известно много методов для иммобилизации клеток включение в различные гели, например, в полиакриламидный гель, агар, в мембраны из поливинилового спирта или фоточувствительных полимеров, в белковые мембраны, сшитые диальдегидом крахмала адсорбция на различных целлюлозах и крупнопористой керамике ковалентное связывание с активированным силикагелем. [c.166]

Рис. 1.14. Схема прибора для измерения адсорбции при помощи радиоактивных индикаторов 1 — рабочий электрод 2 — цилиндрический шлиф 3 — электрод сравнения 4 — мембрана 5 — счетчик Гейгера 6 — вспомогательный электрод Рис. 1.14. <a href="/info/855414">Схема прибора</a> для <a href="/info/171682">измерения адсорбции</a> при <a href="/info/606794">помощи радиоактивных индикаторов</a> 1 — <a href="/info/1121477">рабочий электрод</a> 2 — <a href="/info/55748">цилиндрический шлиф</a> 3 — <a href="/info/6490">электрод сравнения</a> 4 — мембрана 5 — <a href="/info/13425">счетчик Гейгера</a> 6 — вспомогательный электрод

    Ускорение процесса диализа достигается наложением электрического поля (электродиализ), при этом также повышается эффективность разделения, особенно в конце, когда неравенство концентраций ионов по обеим сторонам мембраны становится меньше. Подвергаемый диализу раствор вводят в среднюю из трех камер, где его тщательно перемешивают. Две мембраны отделяют среднюю камеру от боковых камер, в которых расположены электроды. Через боковые камеры непрерывно поступает чистый растворитель. При прекращении перемешивания раствора в средней камере диализатора коллоидные частицы, имеющие собственный заряд или приобретающие заряд в процессе адсорбции ионов, движутся в электрическом поле и накапливаются у одной из мембран, где вследствие увеличения концентрации и плотности опускаются на дно диализатора и могут быть в дальнейшем отделены (процесс электродекантации). При помощи диализа можно разделить небольшие частицы растворов электролитов и частицы коллоидных растворов или высокополимерных веществ. Диализ позволяет определить молекулярный вес соединений и контролировать процессы образования молекулярных ассоциатов, сольватов и т. д. Применяя мембраны соответствующей пористости, можно проводить разделение частиц коллоидных растворов различной величины (ультрафильтрование) [77]. [c.386]

    Отрицательная и положительная адсорбция различных веществ в крови и протоплазме клеток имеет большое значение для обмена веществ в живых организмах. Поверхностное натяжение биологических жидкостей значительно ниже, чем воды (табл. 32). Поэтому гидрофобные вещества, например кислоты жирного ряда, аминокислоты, стероиды, будут накапливаться у стенок сосудов, клеточных мембран, что облегчает их проникновение сквозь эти мембраны. [c.133]

    Тесная связь этих свойств с адсорбцией ионов в капиллярных системах позволяет для описания этой связи ввести обобщающий термин электроповерхностные свойства. Термин капиллярная система в последние годы все чаще заменяется термином мембрана . [c.210]

    Одна из причин задержки ионов — внутреннее электрическое поле самой мембраны, обусловленное ДЭС (в гетерогенных системах) или системой фиксирован-1 ых зарядов (в гомогенных). Это поле, уменьшая вследствие отрицательной адсорбции С- (рис. ХП.5, Ь и ХП. 23) и число переноса коионов, задерживает нх поток, а с ним и поток противоионов (согласно принципу электронейтральности). Действительно, устранение внутреннего поля в условиях ИЭТ прекращает эффект задержки, как показала работа Сидоровой и Ермаковой (ЛГУ) .  [c.219]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]

    В этой системе имеются восемь состояний, представляемые следующими ситуациями носитель на стороне мембраны, смежной бассейну А (состояние 1) или бассейну В (состояние 2) носитель и комплекс компонента 1 на стороне А мембраны (состояние 5) или на стороне В мембраны (состояние 6) комплекс носитель-1 в виде АДФ на стороне В мембраны (состояние 6 ) или в виде АТФ на стороне А (состояние 5 ) комплекс носитель-2 на стороне А мембраны (состояние 7) или комплекс носитель-2 на стороне В мембраны (состояние 8). Затем могут быть определены следующие потоки поток носителя от стороны А к стороне В мембраны (У 12), скорость адсорбции компонента 1 носителем на стороне В мембраны ( 28) или на стороне А мембраны ( 15), скорость адсорбции компонента 2 носителем на стороне В мембраны (728) десорбции на стороне А (/7]) поток комплекса носитель-2 от стороны В к стороне А (737), поток комплекса носитель-1 от стороны А к стороне В мембраны (7, ) скорость активации комплекса носитель-1 на стороне А мембраны (755 ) скорость десорбции АДФ на стороне В мембраны (7 .) поток комплекса носитель-1 от стороны А к стороне В мембраны с одновременно протекающими химическими реакциями АТФ АДФ -I- Ф Эти потоки проиллюстрированы на рис. 4. [c.441]

    При измерениях пользуются как статич., так и динамич. осмометрами. Статич. методы характеризуются относит, большим временем установления равновесия, так что низкомол. примеси успевают равномерно распределиться по обе стороны мембраны и поэтому не оказывают влияния на результаты измерений. Однако возможна адсорбция полимера мембраной, что снижает точность определения мол. массы. При использовании динамич. методов адсорбция полимера мембраной не вносит заметной ошибки, но этот метод требует более сложной аппаратуры и точность его меньше, чем у статич, метода, если р-р содержит низкомол. примеси. Диапазон измеряемых мол. масс с помощью О. составляет 10 -10 . [c.418]

    В настоящее время большое значение придается использованию низкотемпературных процессов разделения газожидкостных систем. В частности, процессы конденсации смесей легких углеводородов получения этана, сжижения метана и т. д. осуществляют с использ(ЗВанием искусственного холода. Альтернативные процессы — повышение давления, диффузия через мембраны, адсорбция и т. д. — для этой цели являются неконкурентоспособными. [c.23]

    Адриамицин Пирографи товый Фосфоролипидные мономолекулярные мембраны Адсорбция при погружении в раствор Ацетатный буферный раствор с pH = 4,5 Циклич. ВА  [c.813]

    Имеется большое число наиболее общих источников ошибок [115]. Среди них асимметрия мембраны, адсорбция полимера на мембране, захват или образование пузырьков, испарение растворителя, поглощение атмосферной влаги, влияние температуры (вследствие неравномерного термостатирования), просачивание, присутствие низкомолекулярных примесей, нестабильность мембраны, диффузия полимера низкого молекулярного веса и т. д. Большинство указанных неприятностей можно избежать или преодолеть путем соответствующего подбора мембраны, улучшения конструкции осмометра или тщательно контролируя условия эксперимента. Но остается неразрешенным вопрос о предотвраще1П№ диффузии полимера через мембрану. [c.403]

    Концентрация С для мембраны из ПВТМС вполне сопоставима со значениями этого параметра для других полимеров, однако малое сродство К ) в процессе адсорбции ЗОг резко уменьшает долю растворенного газа, фиксированного на поверхности дисперсной фазы. Этим также можно объяснить высокую подвижность молекул ЗОг и, следовательно, большую проницаемость мембраны из ПВТМС по этому газу. [c.82]

    В работе [20] также предусматривается выделение водорода с помощью палладиевого порошка в циклическом процессе. Перепад давления на стадии адсорбции и регенерации равен 3,5—3,6 МПа. Поглощение водорода идет с выделением тепла, а регенерация — с поглощением. Имеется предложение [21 ] осуществлять непрерывный процесс, перемещая палладиевый порошок гежду адсорбером п регенератором с помощью пневмотранспорта. При этом процесс в адсорбере и регенераторе осуществляется в псевдоон иженном слое адсорбента. Следует заметить, что методы выделения водорода из водородсодержащего газа с использованием адсорбции над палладиевым порошком не получили применения, так как более эффективным оказалось использование полупроницаемой мембраны из палладиевых сплавов. [c.54]

    В практике пробоотбора при оценке зафязнений атмосферы в последние годы все шире применяют пассивный пробоотбор [43]. В отличие от обычно используемых методов, заключающихся в аспирации заданного объема воздуха, пассивный пробоотбор основан на принципе молекулярной диффузии определяемого вещества через полимерную мембрану и его адсорбции в слое сорбента. Соответствующие устройства отличаются простотой конструкции и обслуживания, компактностью, а также невысокой стоимостью Такие системы особенно удобны для кон-фоля токсичных веществ в течение длительного времени и в широком диапазоне концентраций. Основное достоинство метода - высокая избирательность благодаря выбору мембраны, которая пропускает в фубку с сорбентом лишь молекулы определенного размера. Пассивный хфобоот-бор делает реальной индивидуальную дозиметрию токсикантов, воздействующих на человека за определенный промежуток времени. При этом используют миниатюрные ловушки типа дозимефов. [c.180]

    Ультрафильтрацией иногда пользуются для получения ж-мицеллярнрй жидкости. Однако при этом следует помнить, что во время ультрафильтрации может происходить адсорбция электролитов на ультрафильтре и состав полученного ультрафильтрата может быть не идентичен составу дисперсионной среды. Кроме того, следует учитывать, что при этом уртанавливается мембран ное равновесие, или равновесие Доннана, характеризующееся, неодинаковым распределением электролитов по обе стороны мембраны (см. гл. XIV). [c.258]

    Точность измерений осмотического давления зависит главным образом от качества полупроницаемых мембран (сказывается, в частности, такой фактор, как адсорбция полимера на мембране). Конструкция осмометра должна обеспечивать герметичность, исключать прогиб мембраны растворитель должен быть тщательно очищен. РезультатЕл измерений наиболее точны в области молекулярных весов порядка 3-104—5-10  [c.71]

    Адсорбция гексокиназы на фосфолипидных мембранах (липосомах). Адсорбцию (иммобилизацию) гексокиназы на липосомах проводят суспендированием препарата липосом (3 мг лецитина) в 1 мЛ раствора фермента, содержащего различные количества единиц используемого фермента, а также 15 мМ МдСЬ или 5 мМ глюкозу в качестве адсорбирующих реагентов. Контрольная проба адсорбирующих реагентов не содержит. После 30-минутной инкубации при 0° С мембраны, содержащие адсорбированную гексокиназу, отделяют центрифугированием при 100 ООО я в течение 1 ч и суспендируюг в среде инкубации. Препарат иммобилизованной гексокиназы используют для изучения свойств в день получения. [c.376]

    Выделение. Одии из первых этапов выделения Б,-получение соответствующих органелл (рибосом, митохондрий, ядер, цитоплазматич. мембраны) с помощью дифференциального центрифугирования. Далее Ь переводят в растворимое состояние путем экстракции буферными р-рами солей и детергентов, иногда-неполярными р-рителями. Затем применяют фракционное осаждение неорг. солями [обычно (N 14)2804], этанолом, ацетоном или путем изменения pH, ионной силы, т-ры. Для предотвращения денатурации работу проводят при пониж. т-ре (ок. 4°С) с целью исключения протеолиза используют ингибиторы протеаз, нек-рые Б. стабилизируют полиоламн, иапр. глицерином. Дальнейшую очистку проводят по схемам, специально разработанным для отдельных Б. илн группы гомологичных Б. Наиб, распространенные методы разделения-гель-про-никающая хроматография, ионообменная и адсорбц. хроматография эффективные методы-жидкостная хроматография высокого разрешения и аффинная хроматография. [c.250]

    Разделение через мембраны. Б этом случае Г.р. реализуется благодаря разл. проницаемости компонентов газовой смеси через разделит, мембраны (пористые и непористые перегородки). Эффективность мембраны определяется ее уд. производительностью, т.е. кол-вом газа, прошедшего через пов-сть мембраны за соответствующее время. Аппараты для мембранного Г. р.-замкнутые объемы, разделенные мембранами на две полости. Движущая сила процесса-поддерживаемая постоянной разность парциальных давлений (или концентраций) газов по обе стороны мембраны. В зависимости от назначения мембраны изготовляют из разл. материалов (стекло, металлы, полимерные материалы), к-рым придают форму пластин, трубок, полых волокон, капилляров. Напр., для выделения Hj из продувочных газов произ-ва NH3 используют трубки из сплава Pd для тех же целей применяют полые волокна из полиариленсульфонов. Воздух, обогащенный О , получают с помощью пластин из поливинилтриметилсилана. Важная характеристика мембранных аппаратов-плотность упаковки мембраны, т.е. пов-сть мембраны, приходящаяся на единицу объема аппарата. Плотность упаковки мембран из полых волокон с наружным днам. 80-100 мкм и толщиной стенки 15-30 мкм составляет 20000 м /м , плоских мембран - 60-300 mVm . См. также Абсорбция, Адсорбция, Конденсация фракционная. Мембранные процессы разделения, Мембраны разделительные. Ректификация. [c.465]

    Мембранное газоразделение-разделение на компоненты газовых смесей или их обогащение одним из компонентов. При использовании пористых перегородок с преим. размером пор (5-30)-10 мкм разделение газов происходит вследствие т. наз. кнудсеновской диффузии. Для ее осуществления необходимо, чтобы длина своб. пробега молекул была больше диаметра пор мембраны, т. е. частота столкновений молекул газа со стенками пор превышала частоту взаимных столкновений молекул. Поскольку средние скорости молекул в соответствии с кинетич. теорией газов обратно пропорциональны квадратному корню их масс, компоненты разделяемой смеси проникают через поры мембраны с различными скоростями. В результате пермеат обогащается компонентом с меньшей мол. массой, концентрат-с большей. Коэф. разделения смеси = и,/ 2 = (Мз/М,) , где 1 и 2-числа молей компонентов соотв. с мол. массами М1 и М2. В реальных условиях весьма трудно с помощью пористых мембран обеспечить чисто кнудсе-новский механизм разделения компонентов. Это объясняется адсорбцией или конденсацией их на стенках пор перегородки и возникновением дополнительного т. наз. конденсационного либо поверхностного газового потока, наличие к-рого приводит к снижению К . [c.25]


Смотреть страницы где упоминается термин Мембраны адсорбция: [c.124]    [c.50]    [c.160]    [c.311]    [c.158]    [c.194]    [c.31]    [c.54]    [c.350]    [c.103]    [c.705]   
Мембранная фильтрация (1978) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте