Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные особенности коллоидного состояния

    Итак, основная и важнейшая особенность коллоидного состояния состоит в том, что значительная доля (Всей массы и свободной энергии системы сосредоточена в межфазных поверхностных слоях. [c.71]

    ОСНОВНЫЕ ОСОБЕННОСТИ КОЛЛОИДНОГО СОСТОЯНИЯ [c.9]

    Принципиальной особенностью систем, содержащих ПАВ, является их способность к обратимым переходам в водных растворах из молекулярно-дисперсного состояния в мицеллярное, обусловленная дифильностью молекул или ионов ПАВ. Процессы адсорбции из мицеллярных растворов существенно отличаются от адсорбции из молекулярно-дисперсных растворов. Основные закономерности адсорбции из мицеллярных растворов характерны не только для ПАВ, но и для других коллоидных электролитов, а также для образующих сложные ассоциаты неэлектролитов. [c.91]


    Основная особенность коллоидного состояния — гетерогенность дисперсных систем, состоящих из двух и более фаз одна фаза состоит из отдельных весьма мелких частиц (дисперсная фаза), распределенных в другой фазе — дисперсионной среде, например, в воде. [c.9]

    В самых различных отраслях промышленности в той или другой стадии переработки материала приходится иметь дело с коллоидным или несколько более грубодисперсным состоянием веществ. Это имеет место в нефтеперерабатывающей, металлургической промышленности, во многих производствах основной химической промышленности и др. В строительном производстве цемент и некоторые другие вяжущие вещества проходят при твердении через коллоидное состояние. В особенности большую роль коллоидные и близкие к ним системы играют в производственных процессах пищевой, текстильной, кожевенной, резиновой, мыловаренной промышленности. [c.506]

    Изменение степени дисперсности коллоидных систем. Характерной особенностью коллоидных растворов, в отличие от истинных растворов, является то, что им присуща агрегативная неустойчивость. В тех случаях, когда кинетическая устойчивость преобладает над агрегативной неустойчивостью, степень дисперсности дисперсной фазы практически не изменяется и коллоидный раствор находится в относительно устойчивом состоянии. Таковы гидрозоли золота, приготовленные более 100 лет тому назад Фарадеем и не потерявшие своей устойчивости до настоящего времени. Тем не менее любой коллоидный раствор представляет собой термодинамически неустойчивую систему, поскольку в нем с той или иной скоростью при любых условиях протекает необратимый процесс уменьшения степени дисперсности дисперсной фазы. Основные факторы, препятствующие этому процессу наличие электрокинетического потенциала коллоидных частиц и наличие на них сольватных оболочек или адсорбционных молекулярных слоев. Лишь при одновременном понижении электрокинетического потенциала коллоидных частиц до некоторого (так называемого критического) значения и при разрушении их сольватных оболочек или адсорбционных молекулярных слоев дисперсная фаза с большой скоростью выпадает в осадок. Если же электрокинетический потенциал коллоидных частиц уменьшен до нуля, а сольватные их оболочки и адсорбционные молекулярные слои остаются нетронутыми или сольватные оболочки и молекулярные слои разрушены, а электрокинетический потенциал сохраняет достаточно высокое значе- [c.341]


    В самых различных отраслях промышленности в той или другой стадии переработки материала приходится иметь дело с коллоидным состоянием веществ. Это имеет место и в нефтеперерабатывающей промышленности, и во многих производствах основной химической промышленности, и в ряде других. В особенности большую роль коллоидные системы играют в производственных процессах кожевенной промышленности, текстильной, мыловаренной, искусственного волокна, резиновой, пластических масс и пищевой. [c.348]

    Очистка известкового молока в напорных гидроциклонах. Известковое молоко, получаемое в известегасильных аппаратах, помимо основного компонента Са(ОН)г, который находится в коллоидном состоянии, обычно содержит частицы гравия, песка, кусочки негашеной извести, кокса и т. п. Особенные трудности вызывает песок, отлагающийся в трубопроводах, технологических аппаратах и сооружениях, в которые дозируется известковое молоко. [c.87]

    В самых различных отраслях промышленности в той или другой стадии переработки материала приходится иметь дело с коллоидным состоянием веществ. Это имеет место и в нефтеперерабатывающей промышленности, и во многих производствах основной химической промышленности, и в ряде других. В особенности большую роль коллоидные системы играют в производственных [c.387]

    Нефтяные системы характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением, свойствами и размерами частиц структурных образований, уровнем межмолекулярного взаимодействия в системе и имеют много различий с типичными коллоидными системами. Несмотря на это многие нефтяные и коллоидные системы объединяет одно общее свойство, заключающееся в том, что для них характерны высокоразвитые поверхности раздела фаз и все связанные с этим особенности их поведения в различных условиях существования. Изучение свойств таких систем и основных закономерностей, которым они подчиняются, является предметом коллоидной химии. [c.33]

    Как было показано в разделе 3.4, в процессе фазообразования в нефтяных системах можно выделить три основных этапа. Исходной нефтяной системой является молекулярный раствор, который при определенных условиях превращается в нефтяную дисперсную систему. Определена также последовательность формирования надмолекулярных структур дисперсной фазы и обозначена иерархия возникающих элементов структуры дисперсной фазы нефтяных дисперсных систем с их характерными отличительными особенностями. Несмотря на некоторую упрощенность излагаемой модели, подобное представление позволяет четко проследить переходные состояния нефтяной системы, в которых воздействия на систему будут наиболее эффективными, то есть система будет наиболее восприимчива к этим воздействиям. Такие переходные состояния нефтяных систем предлагается называть кризисными. Кризисные состояния связаны с перестройкой и изменением качества молекулярной и коллоидно-химической структуры системы и более точно характеризуют совокупности элементов дисперсной фазы и дисперсионной среды нефтяной системы, участвующих в данном технологическом процессе. Для любых нефтяных систем характерен интервал определенных внутренних параметров, взаимосвязанных с внешними условиями, в котором система находится в кризисном состоянии. [c.170]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]


    Своей активностью коллоидная фракция обязана в основном. очень малому размеру частиц по отношению к их массе. Благодаря большой удельной поверхности поведение частиц этой фракции определяется главным образом электростатическими зарядами на их поверхностях, которые способствуют развитию сил притяжения и отталкивания между отдельными частичками. Особенно активными коллоидами являются глинистые минералы. Это объясняется как формой (мельчайшие кристаллические пластинки или пакеты таких пластинок), так и молекулярным строением частиц, что приводит к образованию сильных отрицательных зарядов на их базальных поверхностях и положительных зарядов на ребрах. Взаимодействие между этими противоположными зарядами при низких скоростях течения сильно влияет на вязкость глинистых буровых растворов и является причиной обратимого структурообразования, когда раствор находится в состоянии покоя. [c.17]

    Подавляющее большинство поверхностно-активных веществ, применяемых в технике и технологии, имеют ограниченную растворимость, причем переход к новому состоянию раствора при повышении его концентрации отличается уникальным своеобразием. Своеобразие заключается в том, что при достижении некоторой характерной для каждого ПАВ концентрации оно не выделяется в виде новой фазы, а образует коллоидный раствор. Эта концентрация назьшается критической концентрацией мицеллообразования (ККМ). Она является основной термодинамической характеристикой раствора ПАВ. Поверхностно-активные вещества, способные переходить в состояние коллоидного раствора, называются мицеллообразующими или коллоидными поверхностно-активными веществами. Особенность образующихся при этом коллоидных растворов поверхностно-активного вещества в том, что они термодинамически устойчивы, обратимы по отношению к изменению состава раствора и температуры. При валовой концентрации ПАВ большей, чем ККМ, его концентрация в молекулярной форме остается равной ККМ, а все остальное вещество находится в мицеллярной форме. Только мицеллообразующие вещества являются эффективными стабилизаторами суспензий и эмульсий, солюбилизаторами и основным компонентом моющих составов. Критическая концентрация мицеллообразования является и важнейшей технической характеристикой технических поверхностно-активных веществ (табл. 4П1.3). [c.791]

    Природные и сточные воды. Особенность объектов окружающей среды и, в частности, вод заключается в том, что они, как правило, многокомпонентные. В природных и сточных водах содержится большое число разнообразных неорганических, органических, органоминеральных веществ природного и техногенного происхождения. Так, в природных водах России нормируется более тысячи компонентов, в основном органических. Вода может содержать эти вещества как в истинно растворенном состоянии, так и в коллоидном и в виде суспензий и эмульсий. Из-за различной токсичности тех или иных форм соединений одного и того же элемента (разный состав комплексов, степень окисления элемента и др.) необходимо не только определять валовое содержание веществ, но и проводить вещественный анализ. Особое значение приобретает изучение состояния тяжелых металлов в природных водах, изучение их подвижности. Большую опасность дпя водоемов представляют нефтепродукты, пестициды, попадающие со стоками с полей за счет десорбции из почв, фенолы, присутствующие в бытовых сточных водах и в разнообразных производственных стоках. [c.466]

    Тем не менее, указанные особенности кинетики процессов в растворах высокополимеров, несмотря на их практическое значение, не изменяют принципиальной характеристики природы стабильности этих растворов, как термодинамически устойчивых обратимых истинных растворов. Эта характеристика, как указывалось, резко отличает растворы высокомолекулярных веществ от лиофобных коллоидных систем она означает также, что растворы высокомолекулярных веществ подчиняются основному уравнению Vni.l. Рассмотрим теперь более подробно роль энергетического и энтропийного членов уравнения УП1. 1 в термодинамическом состоянии растворов полимеров. [c.172]

    Катализаторы реакций гидрирования и дегидрирования применяются на практике в следующих основных видах 1) в мелко диспергированном состоянии (коллоидная платина, никель и другие металлы), которое достигается путем термического разложения или восстановления солей металлов непосредственно в реакционной массе 2) измельченные до определенного размера или таблетиро-ванные (окислы металлов и хромитные контакты, обычно получаемые осаждением из солей с последующей промывкой, сушкой и прокалкой), и 3) на носителях — материалах с высокоразвитой поверхностью (активированный уголь, окись алюминия, пемза, кизельгур и др.), что особенно характерно для металлических катализаторов (N1, и др.). Их получают восстановлением водородом окислов, осажденных на поверхности носителя. Наибольшее практическое значение имеют два последних вида контактов. [c.642]

    Одной из наиболее надежных коллоидно-химических характеристик гидрофильности глинистых минералов является теплота смачивания, наиболее полно оценивающая количество воды, перешедшей из свободного состояния в связанное. Энергетическая ненасыщенность поверхности глинистых частиц обусловливает интенсивное притяжение молекул дисперсионной среды с образованием мономолекулярного слоя с помощью водородных связей. При этом образуются также полимолекулярные слои рыхло связанной воды. Однако только вода мономолекулярного слоя удерживается особенно прочно и характеризует, в основном, поверхностные свойства того или иного глинистого минерала. [c.12]

    Настоящий учебник физической химии предназначен для студентов выси]их технических учебных заведений нехимичсских специальностей. При написании этого учебника был использован материал книги автора Курс физической химии , изданной в 1956 г. как учебник для химических вузов. В соответствии с новым назначением книга была значительно сокращена и сун1ественно переработана в текст включена глава Коллоидное состояние , посвященная главным образом лиофобным коллоидам, а также две дополнительные главы Метод меченых атомов и химическое действие излучений и Высокополимеры и пластмассы . В последней из них, в соответствии с основным назначением книги для нехимических втузов, главное внимание было обращено не на процессы получения высокополимеров и пластмасс, а на особенности их внутреннего строения и свойств, наиболее существенные для применения полимерных материалов. По той же причине из всех видов полимерных материалов более подробно рассмотрены различного рода пластические массы. [c.11]

    Общеизвестно, что основные вещества протоплазмы, и в первую очередь белки, находятся в коллоидном состоянии. Конечно, этим ни в какой мере не исчерпывается характеристика протоплазмы как специфической биологичеокой системы. Но коллоидное состояние ее обусловливает значительное число особенностей протоплазмы. [c.317]

    Состояние таких коллоидных систем оказывает решающее влияние иа физико-механические свойства вообще и на реологические свойства в особенности. Это имеет очень важное значение для решения трудных и ответственных задач технологии нефти и исиользова-иия таких нефтепродуктов, как технические битумы, топочные мазуты, консистентные смазки и т. п. При рассмотрении подобных коллоидных систем часто недостаточно учитывают качественные особенности их основных компонентов и почти совсем не учитывают роль нефтяных смол как равноправного компонента (наряду с углеводородами) дисперсной системы. Между тем эти факторы оказывают весьма существенное влияние на всю систему в целом, на ее физико-механпческие свойства, которые и определяют в основном технические качества таких иродуктов. [c.495]

    Особняком стоит метод пептизации, который может быть применен для приготовления некоторых золей и стойких суспензий. Он заключается в следующем. Коллоидный раствор или высокодисперсную систему получают, обрабатывая измельченный материал (сажа, графит глина) или промытый осадок (коагель) соответствующего вещества, полученный химической реакцией осаждения, небольшим количеством специального раствора пептизатора в результате получается коллоидный раствор или высокодисперсная система. Пептизировать можно далеко не все осадки плотные, тяжелые осадки не поддаются пептизации, наоборот, рыхлые, студенистые осадки (гидроокиси, сернистые металлы и т. п.), особенно свежеприготовленные, легко пептизируются. Формально пептизацию можно отнести к методам диспергирования, но это, конечно, неправильно. Основной элемент диспергирования — измельчение вещества до нужной степени дисперсности. Пептизируемый же осадок — это уже диспергированный материал, доведенный до коллоидной степени измельчения. Его частицы в результате коагуляции (соединения, слипания) образовали крупные агрегаты, что и привело систему в состояние седиментационной неустойчивости — к выпадению осадка. [c.225]

    Таким образом, скорость изменения дисперсности системы определяется растворимостью вещества дисперсной фазы в дисперсионной среде, коэффициентом диффузии его через дисперсионную среду и поверхностным натяжением границы раздела фаз. Коэффициент диффузии О, в свою очередь, существенно зависит от фазового состояния дисперсионной срёды (очень малые значения характерны для твердых сред), в меньшей степени — от размеров молекул дисперсной фазы и, как правило, не может быть значительно изменен в объеме дисперсионной среды введением каких-либо добавок в систему. Вместе с тем наличие адсорбционных слоев на поверхности частиц (особенно в концентрированных системах, где эти слои составляют основную часть прослоек между частицами) может заметно тормозить процесс изотермической перегонки. Это связано с пониженной проницаемостью таких слоев для молекул дисперсной фазы как за счет снижения коэффи-щ ента диффузии в слое, так и в результате снижения в нем растворимости вещества. Снижение скорости роста частиц при изотермической перегонке может достигаться также вследствие снижения поверхностного натяжения в пределе — при переходе к лиофильным коллоидным системам — процесс перегонки вообще прекращается. Растворимость вещества дисперсной фазы в дисперсионной среде слабо зависит от введения добавок, но сильно меняется в зависимости от природы этих фаз. Дисперсные фазы большинства устойчивых к изотермической перегонке лиофобных систем состоят из веществ, практически нерастворимых в дисперсионной среде. [c.269]

    Механическим свойствам полимерных мембран на ранних стадиях их разработки уделяли мало внимания особое значение придавалось эксплуатационным характеристикам, таким как проницаемость, селективность. В результате не удалось добиться повышения прочности патронных фильтров, особенно тех, которые содержат микрофильтры с максимальной пористостью (а следовательно, с минимальной прочностью). Механические свойства зависят от строения химических групп, макромолекул, микрокристаллического и коллоидного уровней. Рассмотрим, например, значение структуры для одного из основных механических свойств — эластичности. Аморфные полимеры типа поликарбонатов и полисульфонов имеют характерную эластичность как в плотном, так и в пористом состоянии. Сильнокристаллические и сильносшитые полимеры, с другой стороны, имеют тенденцию к хрупкому состоянию. Поликристаллические полимеры могут быть отнесены к любому из этих классов в зависимости от природы сил молекулярного взаимодействия и способа, которым их перерабатывают. Например, разветвленный полиэтилен низкой плотности со слабыми когезионными силами проявляет соответствующую эластичность, поскольку подвижные аморфные области, не содержащие поперечных сшивок, проявляются как одна из форм внутренней пластификации со снятым напряжением. С другой стороны, поликристаллические полимеры, проявляющие склонность к образованию водородных связей, имеют тенденцию к повышению хрупкости, поскольку межмолекулярные и внутримолекулярные связи являются эффективными поперечными связями, а хрупкость пропорциональна плотности поперечных связей. Если набухшие в воде мембраны из целлюлозы и найлона 6,6 высушить, то капиллярные силы будут способствовать высокой концентрации эффективных поперечных связей, и в результате мембрана уплотнится и хрупкость ее повысится. Однако в том случае, когда сушку проводят, заменяя растворитель (например, часто заменяют изопропанол гексаном), плотность поперечных связей минимальна, а эластичность будет сохраняться и в сухом состоянии. [c.117]

    Предлагаемая вниманию читателей книга представляет собой обзор современного состояния проблемы дальних взаимодействий микрообъектов. На основе сопоставления результатов теоретических исследований и опытных данных автор стремился показать распространенность указанных взаимодействий и их определяющую роль в образовании и поведении ПКС. Для большей конкретности значительное внимание при этом уделено рассмотрению особенностей строения и свойств различных существующих в природе и промышленности коллоидных структур. Однако в книге изложение сведений,, относящихся к обширному кругу вопросов, не является йсчерпывающим. Объясняется это, с одной стороны, ограниченным объемом книги, а с другой — желанием в сжатой и доступной для читателя форме обсудить основное содержание проблемы, не затемняя его деталями. [c.5]

    Вода, поглощенная торфом в процессе набухания, находится в измененном энергетическом состоянии [479, 480]. Расклинивающее давление жидких пленок, возникших за счет гидрофилизации поверхности в местах контакта элементов каркаса, нарушает сплошность макроструктуры [481]. Такой периодический характер строения определяет упруго-пластичные свойства торфа, а также оказывает влияние на структурообразование в процессе его сушки, при котором из гелеоб-зазного состояния переходит в компактнокоагуляционное 482]. При значительном содержании воды и высокой степени разложения или диспергирования торфа между дисперсными частицами, имеющими обычно небольшой электрокинетический потенциал, проявляется сравнительно слабое действие молекулярных и ионно-электростатических сил [483]. Несмотря на многие особенности, обусловленные прежде всего большой сложностью состава, торф по своим основным коллоидно-химическим свойствам во многом аналогичен другим дисперсным системам, состоящим из волокнистых частиц, способных набухать в жидкой среде (например, бумажная масса, дисперсии целлюлозных или коллагеновых волокон и другие) [9, 484]. [c.108]

    Однако принципиальное отнесение растворов высокомолекулярных веществ к термодинамически устойчивым равновесным системам не означает, что всегда, когда мы имеем дело с растворолс вы-сокополимера, мы располагаем равновесной системой. Практически это условие далеко не всегда осуществляется ввиду того, что в растворах полимеров достижение равновесия по ряду причин может быть сильно замедленным (в приведенных выше опытах равновесие достигалось в течение ряда недель или месяцев). В этом отношении растворы высокополимеров существенно отличаются от истинных растворов низкомолекулярных веществ, которые, за исключением пересыщенных растворов, действительно всегда находятся в равновесном состоянии. Напротив, в растворах полимеров изменение взаимного расположения длинных цепных, иногда перепутанных, макромолекул не может происходить быстро взаимодействие длинных цепей может сильно измениться уже от образования нескольких связей между ними, для чего достаточно крайне небольшого по весу количества солей или других примесей в растворе. При работе с разбавленными растворами высокоочищенных фракционированных (моподиснерсиых) полимеров действие перечисленных факторов ослабляется и состояние термодинамического равновесия легче достигается, поэтому в научной работе обычно необходимо специально обеспечивать эти условия. Однако при работе с концентрированными растворами, особенно в производственных условиях (резиновые клеи, прядильные растворы целлюлозы и ее эфиров, концентрированные растворы желатины и др.), следует учитывать, что такие растворы не находятся в состоянии термодинамического равновесия и могут достигать его лишь спустя длительное время. Тем не менее эти особенности кинетики процессов в растворах высокополимеров, несмотря на их практическое значение, не изменяют принципиальной характеристики природы стабильности этих растворов, как термодинамически устойчивых обратимых истинных растворов. Эта характеристика, как указывалось, резко отличает растворы высокомолекулярных веществ от лиофобных коллоидных систем. Она означает также подчинение растворов высокомолекулярных веществ основному уравнению (XVIII, 1). [c.253]

    Известно, что в кис.пых почвах, образовавшихся иа кисл1лх породах, особенно легкого механического состава, мало кобальта и меди. Почвы же, которые сформи])овались па основных породах, содержат много этих элементов. Микроэлементы в ночве могут быть в разных формах часть их входит в состав почвенных минералов, другие находятся в поглощенном состоянии иа поверхности почвенных коллоидов, при этом могут участвовать в обменных реакциях и частнчЕю закрепляться на поверхности коллоидных.частиц в виде сложных органических и неоргаЕщче-ских соединений. [c.296]


Смотреть страницы где упоминается термин Основные особенности коллоидного состояния: [c.167]    [c.167]    [c.167]    [c.54]    [c.326]    [c.50]    [c.253]    [c.269]   
Смотреть главы в:

Курс коллоидной химии -> Основные особенности коллоидного состояния

Курс коллоидной химии -> Основные особенности коллоидного состояния




ПОИСК





Смотрите так же термины и статьи:

Коллоидное состояние

Основное состояние



© 2024 chem21.info Реклама на сайте