Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная подвижность в -аморфных полимерах

    Для изучения различных видов молекулярной подвижности в полимерах используют температурную зависимость второго момента спектральной линии АНг [20]. Если полимер, охлажденный до очень низкой температуры, постепенно нагревать, то величина второго момента уменьшается по мере размораживания каждого вида молекулярного движения. Естественно, что наиболее заметное снижение наблюдается при размораживании сегментального движения, т.е. при переходе полимера из стеклообразного в высокоэластическое состояние. Определение температурной области, в которой происходит значительное уменьшение величины АНг , является одним из способов идентификации области стеклования и относится в большей степени к аморфным полимерам. [c.269]


    В настоящее время наука о полимерах претерпевает существенные изменения. Это обусловлено увеличением доли исследований физических свойств полимеров, фронт которых довольно широк. Это и детальное структурное исследование кристаллических и аморфных полимеров, и установление связи механических свойств полимеров с их морфологией, и дальнейшее развитие методов конформационного анализа полимеров и др. Особое внимание в последнее время уделяется изучению молекулярной подвижности твердых полимеров, поскольку это позволяет глубже понять молекулярную природу многих физических процессов. [c.5]

    Теперь перейдем к полимерам и рассмотрим для простоты образец несшитого полимера. В зависимости от того, обладает полимер дальним порядком или нет, он может находиться в твердом (стеклообразном или кристаллическом), каучукоподобном или жидком расплавленном состоянии. Полимер, не обладающий дальним порядком, в кристаллическом состоянии находиться не может. Он существует в стеклообразном, каучукоподобном или жидком состоянии. При низких температурах, когда полимер не обладает ни сегментальной, ни молекулярной подвижностью, он находится в стеклообразном состоянии. При нагревании выше определенной температуры все большую роль начинает играть сегментальная подвижность и полимер становится эластичным. Температура, при которой аморфный полимер переходит из стеклообразного состояния в эластичное, называется температурой стеклования Т .. При дальнейшем нагревании эластического полимера намного выше его проявляется его молекулярная подвижность, и полимер начинает течь. Температура, при которой проявляется молекулярная подвижность и полимер переходит из высоко-эластического в жидкое состояние, называют температурой текучести 7 . Следует заметить, что из-за отсутствия кристаллической решетки истинного плавления в аморфном полимере не происходит, и, следовательно, в этом случае перехода, называемого плавлением, не существует. [c.125]

    В целом ряде частично-кристаллических полимеров линия ЯМР-поглощения имеет сложное строение (рис. 8.6). Такая форма линии объясняется тем, что в кристалле молекулярная подвижность развита слабо и линия ЯМР широка. Спектр ЯМР (первая произ- ВОдная кривой поглощения) частично-кристаллических полимеров состоит из двух компонентов (узкой и широкой полос). При этом узкая полоса (ширина М) отвечает движению протонов аморфной, а широкая полоса (ширина В) — протонов кристаллической части полимера. [c.224]


    Раздельное определение скоростей обеих стадий кристаллиза ции связано со значительными экспериментальными трудностями Легче определить суммарную скорость процесса. Поскольку при Т Тпл кристаллизация термодинамически невозможна, ее ско рость при этих температурах, естественно, равна нулю. Ниже Т скорость кристаллизации с понижением температуры сначала резко возрастает и достигает максимума при (0,80 Ч-0,87) 7пл. Затем по мере приближения к Тс она уменьшается практически до нуля из-за замораживания молекулярной подвижности. Таким образом, кристаллизация аморфного полимера возможна в температурном интервале между температурами плавления и стеклования кинетическое условие кристаллизации). [c.189]

    Итак, высокоэластическое состояние есть одно из состояний аморфных полимеров, возникающее при определенной степени подвижности молекулярных звеньев, и зависит не только от температуры, но и, естественно, от структуры молекулярных звеньев и их относительного расположения в молекулярной цепи. [c.84]

    Аморфные полимеры могут быть стеклообразными, жесткими или эластичными в зависимости от температуры. При низких температурах аморфные полимеры находятся в стеклообразном состоянии, которое сходно с переохлажденной жидкостью. Повышение температуры приводит к переходу из стеклообразного состояния в эластичное при температуре стеклования. При этом наблюдается резкое изменение в физических свойствах, однако изменение плотности происходит непрерывно. Ниже температуры стеклования даже аморфные полимеры приобретают твердость и хрупкость. Атомы и небольшие группы атомов колеблются около среднего положения, но части молекул не скользят одна над другой. Выше температуры стеклования аморфный полимер становится эластичным, а кристаллический — более подвижным и менее хрупким. В аморфных полимерах большие части молекул начинают скользить одна над другой и появляются характерные пластические свойства. Как для аморфных, так и для кристаллических полимеров скорость изменения плотности с температурой гораздо выше температуры стеклования Tg из-за усиления молекулярного движения. Переход от стеклообразного к эластичному состоянию обычно происходит в интервале температур около 50° С, но эта температурная область зависит от типа полимера. Если между поперечными связями и центрами клубков имеются довольно длинные участки молекулярных цепей, которые находятся в броуновском движении, то полимер проявляет эластичные свойства. [c.595]

    Проницаемость полиамидов возрастает с увеличением содержания в них влаги из-за увеличения молекулярной подвижности в аморфных областях полимера. [c.81]

    Состояние полимера можно оценить и по форме линии сигнала ЯМР. В случае аморфных полимеров наличие локального поля и сильного межмолекулярного взаимодействия приводит к тому, что в стеклообразном состоянии кривая поглощения оказывается достаточно широкой. При повышении температуры и молекулярной подвижности происходит некоторое усреднение по времени локального поля и его ослабление кривая поглощения становится более узкой. Для высокоэластического состояния характерно интенсивное молекулярное движение, и кривая поглощения становится очень узкой по сравнению со стеклообразным состоянием. Метод ЯМР широких линий условно можно рассматривать как статическую модификацию метода ЯМР. [c.384]

    В большинстве полимерных резистов используются аморфные полимеры, физико-химические свойства которых определяются конформацией полимерной цепи или ее сегментов. Молекулярное движение полимерной цепи или ее сегментов зависит от температуры. При повышенных температурах возрастает число степеней свободы цепей, что может вызвать течение, и полимер ведет себя как вязкая жидкость. При понижении температуры движение сегментов полимерной цепи уменьшается, а при температуре стеклования Тс полностью прекращается. Ниже Гс полимерный материал приобретает характеристики стекла. Подобное явление наблюдается и у неорганических полимеров, например у силикатного стекла. Тс определяется подвижностью и гибкостью полимерной цепи и до некоторого предельного значения ММ полимера является характеристикой материала. Так как подвижность сегментов полимерной цепи связана со сменой конформации и зависит от времени, то конформация полимерной цепи никогда не является равновесной для достижения равновесия необходимо бесконечно большое время. [c.21]

    Образование структурной сетки наполнителя в термопластах также может оказывать влияние на вязкоупругие свойства системы [260]. В целом вязкоупругие свойства наполненных полимеров определяются теми же общими факторами, которые влияют и на другие их свойства, — природой наполнителя и полимера, степенью взаимодействия между ними и изменением молекулярной подвижности. Это относится как к аморфным, так и к кристаллическим полимерам [261—264]. Однако в отличие от исследований наполненных резин к наполненным термопластам применялись только обычные динамические методы измерений без детального исследования релаксационных спектров и количественного описания результатов с помощью теории ВЛФ. Поэтому остановимся более подробно на влиянии наполнителя на спектры времен релаксации наполненных термопластичных полимеров [260]. [c.139]


    В аморфных полимерах наиболее интенсивный максимум е" или проявляется в области перехода из стеклообразного в высокоэластическое состояние. Он обусловлен микроброуновским движением сегментов полимерных цепей. Диэлектрические потери такого рода получили название дипольно-сегментальных. Процессы диэлектрической релаксации, обусловленные молекулярной подвижностью локального типа, называют диполь-но-групповыми. [c.192]

    В частично-кристаллических полимерах характер молекулярной подвижности в аморфных и кристаллических областях заметно различается. При этом молекулярное движение зависит также и от термомеханической предыстории полимеров. [c.568]

    С увеличением степени кристалличности, пик расширяется, становясь очень асимметричным, и сдвигается в область более высоких температур. Это свидетельствует не только о том, что релаксационный процесс связан с движениями в аморфных областях полимера, но и О том, что присутствие кристаллитов налагает значительные ограничения на молекулярные движения, обусловливающие этот релаксационный процесс. Эти представления были подтверждены результатами измерения молекулярной подвижности в различных образцах политетрафторэтилена методом ядерного магнитного резонанса [23]. [c.165]

    Оказалось, что при охлаждении после нагревания интенсивность проходит через максимум, например, для ПЭ в области 95 °С. Подобное поведение интенсивности малоугловых рефлексов обнаруживается и при дальнейших циклах нагревания — охлаждения, однако эти изменения носят уже только обратимый характер, что можно объяснить различной молекулярной подвижностью в кристаллитах и аморфных областях. При нагревании полимеров в первом цикле существенный рост интенсивности рефлекса вызван также значительным подрастанием боковых размеров кристаллитов. [c.132]

    Рассмотренные выше структуры образуются в основном в аморфных полимерах (см. стр. 72), характеризующихся низкой степенью упорядоченности. Отсюда можно сделать вывод, что полимеры в любом состоянии — достаточно упорядоченные тела. Полный беспорядок в полимерах, перепутанность молекул возможны, очевидно, в растворах и расплавах при очень высоких температурах, когда образование устойчивых флуктуационных агрегатов невозможно из-за высокой кинетической подвижности молекулярных цепей. [c.70]

    Деформационные свойства полимеров обусловлены строением их молекулярных цепей и связаны с различными молекулярными механизмами их взаимодействия. Так, для аморфных полимеров характерны, например, следующие виды деформаций. Во-первых, Гуковская упругость, обусловленная ограниченной подвижностью сегментов макромолекулярных цепей. Обычно считают, что этот вид деформации связан с растяжением валентных связей и углов, а потому величины деформации крайне малы, и материал ведет себя как стекло. Во-вторых, высокоэластичность (или каучукоподобная эластичность), обусловленная свободой перемещения сегментов благодаря гибкости цепи. Наличие флуктуационной сетки физических взаимодействий между цепными макромолекулами препятствует их перемещению в целом, т. е. процессу течения — скольжению макромолекул друг относительно друга, приводящему [c.89]

    Дальнейшее уточнение структуры полимеров в В. с. должно быть сделано с учетом молекулярной упорядоченности (см. Надмолекулярные структуры). В линейных полимерах при низких темп-рах обнаруживается молекулярная упорядоченность в виде пачек при их разрушении и с повышением темп-ры образуются менее устойчивые надмолекулярные структуры. Последние представляют собой упорядоченные области, размеры к-рых порядка сегмента цепи. Они играют роль временных узлов пространственной сетки линейных полимеров. Сегменты, не входящие в такие элементы структуры, можпо назвать свободными, т. к. их подвижность значительно больше, чем сегментов, входящих в упорядоченные области. Представления о структуре аморфных полимеров в B. . как о смеси упорядоченных и неупорядоченных микрообластей объясняют миогие свойства аморфных полимеров. [c.281]

    И определяют температурный интервал его пспользования. В табл. 1.3 приведены и Гдл для некоторых наиболее распространенных полимеров [12]. Рассмотрим вкратце, как и Гдл меняются от одного полимера к другому. Можно рассматривать оба перехода одновременно, так как на них примерно одинаково влияет химическое строение полимера. Полимеры с низкими Тс , как правило, имеют низкие Гдл высокие Гст и Гдл также обычно присущи одним и тем же полимерам. Полимерные цепи, которые нелегко поддаются вращению вокруг связей, необходимому для стеклообразного перехода, должны, по-видимому, и плавиться с трудом. Это положение справедливо, так как оба перехода зависят примерно от одних и тех же факторов. На тот и другой термический переход, как правило, одинаково влияют молекулярная симметрия, структурная жесткость и межмолекулярное взаимодействие [10, 11]. Сильное межмолекулярное взаимодействие (из-за высокой полярности или водородных связей) приводит к сильным кристаллизационным силам, что обусловливает высокие температуры Тцд. Сильное межмолекулярное взаимодействие понижает также подвижность цепей аморфного полимера, в результате и Гст имеют высокие значения. Небольшая [c.36]

    Таким образом, аморфные, а тем более кристаллические полимеры являются микрогетерогенными системами, вследствие чего при их механическом нагружении напряжения концентрируются на структурных неоднородностях, т. е. локализуются в весьма малых объемах. Это приводит к значительному увеличению свободного объема в областях концентрации напряжения и появлению крупномасштабной молекулярной подвижности при температурах существенно более низких, чем температура стеклования. Все это является весьма важным для понимания механизма фибриллизации полимеров в процессе их холодной вытяжки. [c.11]

    Неупорядоченность, присущая аморфным полимерам, является причиной появления структурных дырок , неподвижных при температуре, меньшей температуры стеклования, и подвижных при более высокой температуре. Поэтому выше температуры стеклования дырки играют роль центров движения, поскольку все свободное пространство необходимо для сегментальной диффузии (лежащей в основе течения). Иначе говоря, полимерные сегменты перепрыгивают в дырки (оставляя позади новые) в процессах диффузии и те-, чения. Скорость этих сегментальных процессов увеличивается с ростом температуры и уменьшается с увеличением энергии межсег-ментального (межмолекулярного) взаимодействия, обычно выражаемыми через энергию активации вязкого течения. Кинетическая теория жидкостей Эйринга [43] основана именно на этой молекулярной модели. Впервые она была сформулирована применительно к течению мономеров, при этом в ней предполагалось, что размеры дырок соизмеримы с размерами молекул, а не сегментов. [c.67]

    Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени соверщенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение. [c.138]

    Физико-механические свойства аморфных полимеров зависят от температуры, оказываюш,ей влияние на взаимосвязь между молекулярными цепями и на их подвижность. Определенному температурному интервалу соответствует характерное физическое состояние полимера. У аморфных полимеров различают три таких состояния стеклообразное, в ы с о к о э л а с т и ч е- [c.16]

    Области практического использования спектроскопии КР для характеристики полимеров включают изучение конфигурации и конформации цепей гомо- и сополимеров, образования спиралей полимерных кристаллов и межламеллярных взаимодействий в них кристаллической и аморфной ориентации в полимерах текстуры, особенно при использовании низкочастотной спектроскопии КР молекулярной подвижности в растворе полимерных расплавов сетчатых полимеров и гелей влияния напряжения на полимеры процессов деструкции. [c.294]

    Обычно для полимеров одинакового или близкого химического строения, переходящих в высокоэластическое или расплавленное состояние при разной температуре, наибольшей термической устойчивостью обладает более высокоплавкий образец, что объясняется диффузионным торможением деструктивных процессов в твердой фазе полимера. Для рассматриваемого карборансодержащего полиарилата наблюдается обратная картина наименьшее уменьшение массы в условиях как динамической (в интервале 400—450 °С), так и изотермической (400 °С, 3 ч) термогравиметрии показывает аморфизированный образец. С повышением степени кристалличности полимера во всех случаях увеличиваются потери массы. Например, масса аморфизированного образца не изменяется до 650 °С, кристаллические же образцы обнаруживают уменьшение в массе при 400 °С. Высказано предположение, что неодинаковое поведение при нагревании кристаллического и аморфизированного образцов данного полиарилата может быть обусловлено различием их молекулярной подвижности в области 280-380 °С [119]. Повышенная термическая устойчивость аморфного полимера с относительно низкой температурой размягчения обусловлена или повышением стабилизирующего влияния карборановых групп в расплаве полимера, или образованием более термически устойчивых вторичных структур за счет взаимодействия по карборановым группам, протекание которых в расплаве или в высокоэластическом состоянии облегчается. В высококристаллических полимерах с высокими температурами плавления проявление этих эффектов, очевидно, затруднено [118]. [c.266]

    Изменение молекулярной подвижности приводит к существенному изменению температуры стеклования аморфных линейных и сетчатых полимеров в граничных слоях. Оно следует из приведенных данных по молекулярной подвижности и из многочисленных измерений температур стеклования полимеров в граничных слоях, проведенных нами и многими другими авторами. Термодинамическая интерпретация изменения температур стеклования полимеров на границе раздела с твердой фазой дана в работе Ю. С. Липатова и В. П Привалко [2341. [c.164]

    Приведе1Ш[>1е результаты позволяют сделать вывод о том, что на границе раздела с твердым телом, равно как и на границе раздела полимер — газ, происходит существенное уменьшение молекулярной подвижности полимерных цепей. Этот факт экспериментально доказан на большом числе аморфных полимеров с применением термодинамических, структурных и механических методов и считается сейчас твердо установленным. Однако вывод об изменении молекулярной подвижности явился результатом исследований свойств наполненных систем и покрытий, свойств, которые в конечном итоге определяются молекулярной подвижностью. [c.180]

    Усиливаю1цее действие наполнителей тесно связано также с молекулярными движениями в полимерах [546]. Резкое, падение прочности наполненных каучуков при понижении температуры ниже 7 с по сравнению с ненаполненными связывается с невозможностью релаксации напряжений, возникающих ниже Тс вследствие разности термических коэффициентов расширения полимера и наполнителя. Это приводит к снижению адгезии, и, таким образом, в наполненных системах подвижность кинетических элементов влияет не только на деформационные процессы и развитие дефектов, но и на когезию. Поэтому температурная зависимость усиливающего действия и прочность наполненных систем на основе аморфных полимеров определяются подвижностью элементов системы независимо от того, является ли полимер эластомером или термопластом. Реализация подвижности приводит к повышению как прочности, так и эффектов усиления. [c.272]

    В общем виде можно дать следующую классификацию типов микрогетерогенности в многокомпонентных полимерных системах 1) молекулярная микрогетерогенность, проявляющаяся в измене- НИИ в межфазном слое таких физических характеристик, которые определяются макромолекулярным строением полимерных цепей (термодинамические свойства, молекулярная подвижность, плотность упаковки, свободный объем, уровень межмолекулярных взаимодействий и др.) 2) структурная микрогетерогенность, определяемая изменениями во взаимном расположении макромолекул друг относительно друга в поверхностных и переходных слоях на разном удалении от межфазной границы и характеризующая ближний порядок в аморфных полимерах и степень кристалличности в кристаллических полимерах 3) микрогетерогенность на надмолекулярном уровне, определяемая различиями в типах и характере формирования и упаковки надмолекулярных структур в поверхностных слоях и в объеме 4) химическая мйкрогетероген-ность, обусловленная влиянием границы раздела на формирование полимерных молекул микрогетерогенность этого типа может быть также дополнительной причиной указанных выше трех типов микрогетерогенности. [c.285]

    Процессы перехода к состоянию термодинамического равновесия в полимерах осуществляются за счет самых различных видов молекулярного движения. Каждому виду молекулярного двил екия соответствует определенный релаксационный процесс, который характеризуется своим временем релаксации. Для того чтобы наблюдать и исследовать какой-либо релаксационный процесс в полимерах и соответствующий ему тип молекулярного двил<еиия, необходимо, чтобы время воздействия на полимер (или время наблюдения) было соизмеримо со временем релаксации. Следовательно, для изучения релаксационных процессов акустическими методами (а это один из наиболее распространенных методов их изучения) необходимо, чтобы период звуковых колебаний был того же порядка, что и время релаксации полимера. Рассмотрим линейный аморфный полимер, находящийся в высокоэластическом состоянии. В этом случае число возможных конформаций, которые мол ет принимать каждая макромолекула, достаточно велико, и в полимере реализуются весьма разнообразные виды молеку-лг рного движения. Пусть в таком полимере распространяются звуковые колебания, частоту которых можно изменять в широких пределах. Если частота звуковых колебаний очень мала, т. е. период звуковых колебаний очень велик по сравнению с временем релаксации са- . ых больших кинетических элементов макромолекул, то энергия звуковых колебаний, которую получат за период элементарный объем полимера, будет быстро перераспределяться по всему объему полимера вследствие сегментальной подвижности микроброуновского типа (диффузии сегментов макромолекул). В этом случае процесс рассеяния энергии носит квазиравновес-ный характер, механические потери невелики, и полимер быстро восстанавливает свои размеры и форму пос.п -снятия приложенного внешнего напрял ения. Естественно, что и динамический модуль упругости полимера (а также скорость звука в нем) будет очень малым, т. е. такого л<е порядка, как и жидкости. [c.254]

    В 1957 г. были выдвинуты новые представления о строении аморфных полимерных тел, согласно которым аморфные полимеры рассматривали как упорядоченные системы, состоящие из молекулярных цепей, собранных в начки [1]. Эта концепция получила экспериментальное подтверждение при исследовании полимеров как в стеклообразном [2—4], так и высокоэлас-тЕческом [5, 6]состояниях. В связи с обнаруженной упорядоченностью в аморфных полимерах возникает совершенно естественный вопрос о природе и условиях возникновения этих структур. Но-видимому, нужно предположить, что-они могут образовываться в условиях, когда реализуется молекулярная подвижность, т. е. в растворах и расплавах. Действительно, уже сравнительно давно на основании изучения ряда свойств растворов полимеров с помощью косвенных методов были высказаны многочисленные предположения о структуре растворов полимеров и о возможности протекания в них агрегационпых процессов. Однако до сих нор в литературе отсутствуют данные прямых экспериментальных исследований структуры высокомолекулярных соединений в растворах и расплавах. Это обстоятельство связано с весьма ограниченным числом удобных и надежных методов исследования подобных объектов. Поэтому задача настоящего исследования заключалась в разработке новых методов для непосредственного изучения структуры полимеров в растворах и изучение их с помощью характера структурообразования макромолекул в растворах. [c.185]

    Представления о структуре аморфных полимеров в конденсированном состоянии как о системе перепутанных цепных молекул привели к разработке молекулярных механизмов пластицирующего действия добавок низкомолекулярных веществ, вводимых в такие полимеры, выражаемого правилами мольных [1] или объемных [2] долей. Влияние низкомолекулярных веществ на механические свойства полимеров рассматривалось в этих случаях на молекулярном уровне характеристики явления пластификации. Однако в последнее время эти представления претерпели существенные изменения. Оказалось, что полимеры представляют собой систему высокоупорядоченных вторичных структурных образований [3], имеющих в отдельных случаях строгую геометрическую огранку, сходную с кристаллическими формами [4—7]. Новые данные, полученные по характеристике структуры аморфных полимеров, оказались весьма плодотворными для понимания явления пластификации полимеров низкомолекулярными веществами, которые ограниченно совмещаются с полимерами. Было показано, что влияние именно таких низкомолекулярпых веществ на механические свойства полимеров, определяющие их пластифицирующий эффект, связано со степенью распада надмолекулярных структур в полимерах. Можно представить, что процессы распада надмолекулярных структур в полимерах имеют такой же ступенчатый характер, как и процессы самого структурообразования. Полное разрушение всех вторичных структурных образований характеризуется возникновением термодинамически устойчивого раствора [8]. Уменьшение хрупких свойств материала в этом случае приводит к так называемой внутри-пачечной пластификации полимера [9]. Введение в полимер низкомолекулярных веществ, ограниченно совмешающихся с ним и вызывающих разрушение вторичных надмолекулярных образований, приводит к полученииз системы из молекул таких веществ, равномерно распределенных между первичными надмолекулярными образованиями — пачками цепей. Если при этом уменьшаются хрупкие свойства полимерного материала, имеет место так называемая межпачечная пластификация полимера [9]. Наконец, можно представить и существование начального акта распада, который должен характеризоваться нарушением контактов между вторичными надмолекулярными структурными образованиями. При этом подвижность таких сложных образований должна возрасти, а количество низкомолекулярного вещества, сорбированного на местах контактов, должно быть, по-видимому, весьма небольшим. Излон енные соображения явились предметом настоящего исследования. [c.387]

    Существует больщое число некристаллических (аморфных) полимеров, которые не способны к истинному плавлению, но вместе с тем при достаточно низких температурах становятся жесткими и твердыми. Температура этого превращения зависит от природы полимера и колеблется от —70 °С для натурального каучука до 100 °С для полиметилметакрилата. Эта температура, при которой аморфный полимер переходит из эластичного, каучукоподобного состояния в жесткое, стеклообразное состояние, называется температурой стеклования (Т т). На молекулярном уровне ее можно представить как температуру, при которой относительно большие сегменты основной цепи полимера становятся подвижными. Ниже этой температуры значительные перемещения сегментов затруднены и аморфный полимер становится жестким и твердым, тогда как при более высокой температуре относительная подвижность длинных участков макромолекулярной цепи обусловливает каучукоподобность полимера. [c.239]

    Рассмотрим вкратце, какова связь между свободным объемом, молекулярной подвижностью и процессом перехода полимера из стеклообразного состояния в высокоэластическое [273]. Если представить аморфный полимер как совокупность макромолекул, плотно упакованных в квазирешетку, то координированное крупномасштабное движение молекул в этом случае невозможно, поскольку отсутствует необходимое для осуществления [c.40]


Смотреть страницы где упоминается термин Молекулярная подвижность в -аморфных полимерах: [c.50]    [c.49]    [c.144]    [c.59]    [c.48]    [c.263]    [c.85]    [c.198]    [c.174]    [c.363]    [c.360]    [c.368]   
Смотреть главы в:

Акустические методы исследования полимеров -> Молекулярная подвижность в -аморфных полимерах




ПОИСК





Смотрите так же термины и статьи:

Аморфные полимеры

Молекулярная подвижность



© 2025 chem21.info Реклама на сайте