Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

нки мономолекулярные, на воде

    В спектрах неполярных растворителей, например четыреххлористого углерода, проявляется невозмущенная водородной связью аналитическая полоса при 1,38 мкм, соответствующая поглощению мономолекулярной водой. В интервале длин волн 1,40—1,42 мкм имеет место наложение двух полос колебания ОН-групп ассоциа-тов типа вода —вода и ОН-групп ассоциатов типа вода —растворитель [44]. [c.26]


    Полярные молекулы растворяющегося вещества ориентируются в мономолекулярной пленке таким образом, что полярные концы молекул направлены внутрь, а углеводородные хвосты — в воздух. На рис. 4.4 в качестве примера показана ориентация молекул нитробензола на поверхности воды. Небольшие по размеру нейтральные молекулы стремятся расположиться в плоскости поверхности. [c.190]

    Иногда процесс рекомбинации атомов на поверхности твердых тел является типичным гетерогенным процессом. Это проявляется в том, что скорость рекомбинации существенно зависит от химической природы поверхности. Например, наличие мономолекулярного слоя воды на поверхности кварца и стекла значительно затрудняет рекомбинацию атомов водорода и кислорода, галогениды щелочных металлов затрудняют рекомбинацию атомов хлора. На гетерогенность процесса указывает и зависимость скорости рекомбинации атомов от температуры. Понижение температуры поверхности часто способствует рекомбинации (например, рекомбинация атомов водорода с по нижением температуры ускоряется). [c.87]

    В отличие от ряда минеральных сорбентов, торфу присуща высокая подвижность скелета надмолекулярных структур. Так, в опытах по сорбции воды на торфе в интервале температуры от 20 до 45 °С получено, что объем мономолекулярно связанной воды при 25°С и ф 0,25 увеличивается в 1,2—1,5 раза [211]. В результате рассчитанные значения дифференциальной изостерической теплоты сорбции оказываются меньше теплоты конденсации паров воды. В то же время непосредственно измеренная теплота смачивания торфа водой всегда выше [c.65]

    На поверхности воздух — вода фосфолипидные молекулы образуют мономолекулярную пленку, обращенную головками к воде и хвостами в воздух. При увеличении концентрации липидов часть молекул уходит в глубь воды, где при достижении определенной критической концентрации мицеллообразования образуются различные жидкокристаллические структуры — кубическая, гексагональная или ламеллярная [423]. Общий принцип построения этих структур заключается в том, что полярные головки стремятся контактировать с водой, а углеводородные хвосты— друг с другом. Реализация той или иной мезофазы зависит от концентрации липида в системе, температуре, pH и ионной силы раствора. [c.148]

    Влага пасты карбоната бария имеет адсорбционную связь, т.е. на поверхности твердого тела образуется поверхностный мономолекулярный слой адсорбированной воды (гидратная оболочка), который связывается наиболее сильно. Последующие слои связанной жидкости (полимолекулярная адсорбция) удерживаются менее прочно, а свойства ее постепенно приближаются к [c.14]


    За период с 1916 по 1922 гг. опубликован ряд блестящих исследований И. Лэнгмюра [И] по поведению и свойствам мономолеку-лярных пленок, по адсорбции и хемосорбции твердыми поверхностями. К этому же периоду относятся интересные исследования по адсорбции, проведенные Н. Адамом [12] и Дж. Мак-Беном [13]. П. А. Ребиндер и А. А. Трапезников [14] изучили структурно-механические свойства мономолекулярных пленок различных органических соединений на воде и растворах Н. Д. Зелинский [15], М. М. Дубинин [16] и другие провели многочисленные исследования по активированию углей, по адсорбции твердыми веществами, по теории адсорбции. Перечисленные главнейшие работы позволили близко подойти к пониманию поверхностных явлений и гетерогенного катализа. [c.92]

    В основе первого положения Лэнгмюра [11] лежат многочисленные работы по образованию жидких пленок на поверхности воды. Ранее было установлено, что оливковое масло растекается по поверхности воды до тех пор, пока не образуется мономолекулярный слой его, причем поверхностное натяжение воды падает до 21 дн/см . Эти опыты были затем продолжены различными исследователями. Изучение образования, природы и структуры таких пленок на поверхности жидкости способствовало пониманию гетерогенного катализа. [c.96]

    Свойства. Простые эфиры представляют собой вещества с приятным ( эфирным ) запахом, очень плохо растворимые в воде, но легко растворимые в органических растворителях. Низшие члены ряда весьма летучи их температуры кипения всегда значительно ниже, чем те.мпе-ратуры кипения спиртов с тем же числом углеродных атомов (табл. П). Это интересное явление объясняется тем, что спирты, подобно воде, сильно ассоциированы вследствие наличия гидроксильной группы. В то же время эфиры находятся в мономолекулярном состоянии, так как в них отсутствует гидроксил, обусловливающий ассоциацию воды и спиртов. [c.150]

    Препарат получен путем добавки в диспергирующее средство ДН-75 (смесь оксиэтилированных ПАВ) компонента, который обусловил такие физико-химические свойства композиции, что при нанесении ее на поверхность воды быстро образуется мономолекулярная пленка. Эта пленка обладает достаточным поверхностным давлением, прочностью и стабильностью для локализации нефтяной пленки, которая собирается в отдельные слои или линзы, имеющие толщину 5-6 мм и значительно меньшую площадь по сравнению с первоначальным загрязнением. [c.19]

    Ребиндер показал, что поверхностно-активным веществом по отношению к раствору соли является вода. Вследствие этого на поверхности раствора образуется мономолекулярный слой воды. Предполагая, что концентрация электролита постоянна во всем объеме вплоть до границы поверхностного слоя воды, и обозначая через Гг недостаток растворенного вещества в поверхностном слое на 1 см , через 6 — толщину этого слоя и через т — моляр-ность раствора, получим [c.31]

    Молекулярная ориентация и микроструктура пленок. Основные типы пленок [3, 5]. Если в качестве подкладки применять чистую воду, а для получения мономолекулярных пленок брать [c.53]

    Итак, образование устойчивой мономолекулярной поверхностной пленки можно рассматривать как процесс растворения гидрофильной группы в воде при наличии сопротивления погружению со стороны гидрофобной части молекулы. [c.55]

    Некоторые вещества, растворенные в воде, способствуют изменению поверхностного натяжения растнора. Такими свойствами обладают молекулы ПАВ, которые, растворяясь, ориентированно адсорбируются на поверхности (см. рис. 36). Такая ориентация молекул и образует новый поверхностный слой с особыми физико-химическими свойствами. При этом поверхностное натяжение воды уменьшается, так как мономолекулярный слой, покрывающий ориентированно поверхность воды, обладает теперь более низкой энергией. [c.347]

    И Ю1 Да при большом избытке одного из реагируюш,их веществ по сравнению с другими его концентрация остается практически постоянной в течение реакции. Тогда порядок реакции будет на единицу меньше, чем следовало бы ожидать по стехиометрическому уравнению. Примером может служить реакция инверсии тростникового сахара или гидратации мочевины. Эти реакции по существу бимолекулярны, но протекают, как реакции мономолекулярные, т. е. подчиняются уравнению реакции первого порядка, так как концентрацию воды, присутствующей в большом избытке, в них можно считать неизменной и поэтому ее можно объединить с константой скорости в одну постоянную величину. Так, скорость реакции инверсии тростникового сахара можно представить [c.326]

    Такое же защитное действие на гидрофобные коллоиды оказывают поверхностно-активные вещества (ПАВ), но в этом случае большое значение имеет характер ориентации ПАВ в адсорбционном слое. Устойчивость коллоидных систем е водной среде более высокая, если полярные группы ПАВ адсорбционного слоя обращены в воду, так как только при этом увеличивается гидрофиль-ность поверхности. Установлено, что адсорбционные слои не всегда бывают сплошными. Во многих случаях стабилизация системы наступает при покрытии монослоем всего 40—60% поверхности коллоидных частиц, когда защитный слой имеет прерывный характер. Но максимальная устойчивость некоторых коллоидных систем зависит от образования полного мономолекулярного слоя (например, при добавлении желатина к золям золота или суспензиям кварца). [c.84]


    Согласно адсорбционной теории наступление пассивного состояния не обязательно связано с образованием полимолекулярной сксндной пленки. Оно может быть достигнуто также за счет торможения процесса растворения, вызванного адсорбированными атомами кислорода. Появление кислородных атомов на поверхности металла в результате разряда ионов 0Н (или молекул воды) может происходить при потенциалах более низких, чем те, при которых выделяется кислород или образуются оксиды. Адсорбированные атомы кислорода пассивируют металл, или создавая на его поверхности сплошной мономолекулярный слой, или блокируя наиболее активные участки поверхности, или, наконец, изменяя эффективную величину скачка потенциала на границе металл — раствор. Представление о сплошном мономоле1сулярном слое кислородных атомов как о причине пассивности металлов не дает ничего принципиально нового по сравнению с пленочной теорией пассивности, тем более, что такой слой трудно отллчить от поверхностного оксида. По количеству кислорода мономолекулярный слой его адсорбированных атомов (или молекул) при плотной упаковке эквивалентен двум — четырем молекулярным слоям, составленным из поверхностного оксида. [c.483]

    Кристаллические нитрозохлорйды обычно бывают бимолекулярны и поэтому называются бмс-нитрозохлоридами, но в растворе они могут находиться и в мономолекулярной форме, многие из них имеют голубой цвет. Во многих случаях моиомолекулярные производные летучи с водяным паром, однако то из них, у которых атом хлора находится при третичном атоме углерода, легко гидролизуются при стоянии с водой при обычной температуре в питрозоспирт или изомеризуются в оксимы ,  [c.361]

    Основные положения теории Медведева были развиты в других работах, в которых считается, что зоной реакции полимеризации является мономолекулярный слой квазикристаллической структуры, образованный эмульгатором и морюмером. В этом слое молекулы эмульгатора образуют систему микрокапилляров,, представляющих в поперечнике шестигранники. Капилляры, строение которых определяется природой эмульгатора и условиями полимеризации, являются своеобразными ячейками — местом протекания элементарных реакций полимеризации. Приведенные взгляды подтверждены кинетическими уравнениями, выражающими зависимость скорости и степени полимеризации от концентрации эмульгатора и инициатора при полимеризации хлоропрена [39]. Принимается, что все стадии полимеризации инициирование, рост и обрыв полимерных цепей — происходят в адсорбционных слоях эмульгатора, независимо от растворимости всех компонентов в воде. [c.150]

    Алюмомагнийсиликатные катализаторы проявляют повышенную активность лишь прп более высоком содери<ании окпси магния, а алюмосиликатные катализаторы — при сравнительно более низком содержании окиси алюминия. Это объясняется тем, что гидроокись алюмипия располагается на поверхности силикагеля менее чем мономолекулярным слоем, а гидроокись магния при осаждении обычно получается в кристаллической форме и располагается иа поверхности силикагеля ие менее чем монокристаллическим слоем. Активные алюмомагнийсиликатные катализаторы проявляют лучшие показатели при содержании окиси магния не менее 24—28%. Поэтому паростабильный и высокоактивный магнийсиликатный гидрогель, обработанный активирующим раствором сернокислого алюминия, формуется прп следующих оптимальных параметрах концентрация раствора жидкого стекла 1,25 —1,35 п. концентрация раствора серпокислого магния 1,15 —1,25 п. количество серной кислоты для подкисления рабочего раствора сернокислого магния 80—82 г/л соотношение расхода растворов жидкого стекла к сернокислому магнию 1,5 1,0 время коагуляции золя 7—9 сек pH золя 8,0—8,2 температура смеси растворов 14—19° С температура формовочного масла 20—24° С температура формовочной воды 25 — 30° С при pH от 7,0 до 7,5. [c.94]

    Наряду с наиболее прочно связанной водой в торфе, как отмечалось выше, существует и ряд других категорий влаги, находящейся в более подвижном состоянии. Прежде всего, это вода полимолекулярной сорбции, которая по теплоте испарения мало отличается от свободной. Заполнение полимолекулярных слоев происходит после завершения формирования мономолекулярно-го слоя воды в результате последующей сорбции молекул воды на вторичных центрах [219] с формированием двух- и трехмерных пленок на поверхности структурных единиц материала. В торфе кроме физико-химически связанной влаги (воды моно-и полисорбции) различают также энтропийно связанную воду (осмотическую), воду механического удерживания и химически связанную [220]. [c.68]

    Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопнческого метода в растворе нафталина при температуре 80 °С (температуре плавления нафталина) и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени [42]. Определение молекулярной массы тех же асфальтенов методом мономолекулярной пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100 000 и более [19, с. 501 и сл.]. Вероятно, истинно мономолеку-лярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях. [c.33]

    Крноскопичес1 ий, в камфоре То же, в нафталине Мономолекулярная пленка на поверхности воды [c.74]

    По вопросу механизма распада гидроперекисей существуют различные мнения. По данным одних исследователей [333—337], распад гидроперекисей идет по мономолекулярному механизму с разрывом О—0-связи. Другие авторы [211, 316, 338, 339] приводят данные в пользу бимолекулярного распада гидроперекисей с образованием воды, окси- и пероксирадикалов, а некоторые считают, что распад гидроперекисей протекает одновременно по мо-номолекулярпой и бимолекулярной реакции. [c.299]

    Гатос [20] показал, что оптимальное игнибирование стали в воде с pH = 7,5, содержащей 17 мг/л Na l, происходит при концентрациях, превышающих 0,05 % бензоата натрия или 0,2 % натриевой соли коричной кислоты. С использованием радиоактивного изотопа в качестве индикатора, на поверхности стали, погруженной на 24 ч в 0,1, 0,3 и 0,5 % растворы бензоата натрия, было обнаружено, соответственно, всего лишь 0,07, 0,12 и 0,16 мономолекулярного слоя бензоата (0,25 нм , фактор шероховатости 3). Эти данные подтверждают полученные ранее [12] результаты измерений в бензоате с использованием индикатора С. Чтобы объяснить, почему столь малое количество бензоата на поверхности металла может увеличивать адсорбцию кислорода или в определенной степени уменьшать восстановление кислорода на катодных участках, требуются дальнейшие исследования. Этот эффект характерен именно для катодных участков на железе, так как при контакте железа с золотом в 0,5 % растворе бензоата натрия восстановление кислорода на золоте, видимо, не замедляется, и железо продолжает корродировать. [c.264]

    Метод Ленгмюра — Адама лишен этих недостатков. Он применим для поверхностей раздела воздух — жидкость. Длинную узкую кювету с плоскими парафинированными краями наполняют до краев маслом или водой. Эмульгатор наносят на поверхность с помощью шприца-микрометра, и образующийся мономолекулярный слой сжи-лшют подвижным парафинированным предметным стеклом (рис.П1.30). При уменьшении площади пленки сила действует на легкий дюралюминиевый поплавок. Чтобы молекулы пленки не проникали за поплавок, к нему одним концом присоединяют шелковую нить, другой конец которой лежит на поверхности кюветы. Сила, действующая на поплавок, слегка его смещает. Это передвижение определяют с помощью устройства лампа — зеркало — шкала. Смещение поплавка на 1 мм дает регистрирующееся отклонение зайчика на 20 см. [c.183]

    По мнению автора, механизм снижения набухания негидратированных глинистых пород при действии ПАВ различен и в основном обусловлен свойствами, размерами и строением частиц ПАВ. При малых размерах молекул обра ующийся адсорбционный мономолекулярный слой имеет меньшую толщину, чем гид-ратный. При этом процесс пептизации идет глубоко и приводит к образованию примерно одинаковой удельной поверхности глин как в воде, так и в водных растворах ПАВ [20]. [c.57]

    При больших размерах молекул или агрегатов ПАВ, когда при растворении образуются коллоидные растворы, механизм снижения набухания глин отличен от изложенного выше. В этом случае коллоидные частицы ПАВ, адсорбируясь на поверхности глинистых част1[ц, образз ют мономолекулярный слой, толщина которого значительно больше толщины гщ ратного слоя. Однако образующийся слой препятствует пептизации глинистых частиц под действием дисперсионной среды и тем сильнее, чем выше концентрация ПАВ. В результате этого удельная поверхность набухших в растворах ПАВ глинистых пород имеет меньшую величину, чем п])и действии воды. Суммартай эффект выражается в снижении набухания глин вследствие прелалирующего процесса уменьшения пептизации глинистых частиц. [c.57]

    Ацетальдегид представляет собой легкоподвижную жидкость с резким опьяняющим запахом (т. кип. 2Г), хорошо растворим в воде, весьма склонен к полимеризации. При прибавлении одной капли концентрированной серной кислоты к безводному ацетальдегиду он превращается в тримерный паральдегид (СНзСНО)з. Реакция протекает настолько бурно, что при этом может происходить вскипание жидкости. При 0° из ацетальдегида под влиянием небольпшх количеств серной кислоты или НВг + Са(N03)2,получается другая полимерная форма — метальдегид. Паральдегид представляет собой жидкость (т. кип. 124°), метальдегид — твердое вещество. Оба полимера не восстанавливают аммиачного раствора нитрата серебра, не осмоляются при действии щелочей и, следовательно, не содержат альдегидных групп. Одиако они довольно легко, например при перегонке с разбавленной серной кислотой и даже при нагревании с водой, постепенно превращаются снова в мономолекулярный ацетальдегид. На основании этих свойств, а также криоскопического определения молекулярного веса строение обоих альдегидов лучше всего может быть выражено циклическими формулами для паральдегида — (1), для метальде-гида — (II)  [c.213]

    Проведенные в 1976 г. сотрудниками ВНИИСПТнефти исследования показали, что ПАВ, обычно рекомендуемые в качестве эмульгаторов и стабилизаторов маловязких нефтяных эмульсий, не обеспечивают гидрофильность металлической поверхности. Причинами этого являются мономолекулярный характер адсорбции ионогенных ПАВ с ориентацией молекул углеводородными концами в наружную сторону от металла и отсутствие адсорбции неионогенных ПАВ. Поэтому указанные ионогенные ПАВ рекомендуется применять в трубопроводном транспорте нефти с водой только с добавками, улучшающими избирательное смачивание внутренней поверхности трубы со стороны водной фазы (типа силиката натрия, жидкого стекла, гексаметафосфата и триполифосфата натрия, полиакриламида, солей карбоксилметилцеллюлозы и др.). [c.114]

    Мономолекулярная природа поверхностных пленок. Поверхностное давление [1—4]. Нерастворимое и нелетучее вещество, помещенное в небольшом количестве на поверхность жидкости с большим поверхностным натяжением (например воды), может оставаться в виде нерастекающейся капли, либо растекаться по поверхности. Необходимое и достаточное условие растекания вещества — более сильное притяжение его молекул к растворителю (воде), чем друг к другу. Иными словами, работа адгезии между веш,еством и жидкостью в этом случае превышает работу когезии самого вещества. Если это условие соблюдено, то молекулы растекающегося вещества стремятся прийти в непосредственное соприкосновение с жидкостью, обычно называемой подкладкой . Если позволяет площадь подкладки, растекающаяся жидкость образует мономолекулярный слой. Особое состояние вещества в этих пленках представляет большой интерес. [c.51]

    Спирты и жирные кислоты, образующие устойчивые пленки,, имеют на конце углеводородной цепи группу ОН или СООН. В соединениях с короткой цепью та и другая группы сообщают растворимость всей молекуле (этиловый и пропиловый спирты, уксусная и пропион овая кислоты). Эти соединения гидрофильны. Наоборот, в соединениях с достаточно длинной цепью группа ОН или СООН уже не в силах втянуть всю молекулу в воду вследствие гидрофобности остальной части молекулы и возникающего сопротивления погружению, оказываемого длинной цепью. Вместо погружения, молекулы растекаются по поверхности, образуя мономолекулярный слой и ориентируясь гидрофильными группами в сторону воды. Парафины с длинной цепью, не содержащие гидрофильных групп, не образуют поверхностных пленок. [c.55]

    Сущность метода состоит в том, что на поверхность воды наносят каплю испытуемой жидкости, которая растекаётся по водной поверхности и образует мономолекулярный слой. Барьер X—X свободно передвигается по поверхности, а поплавок А—А связан с крутильной нитью динамометра. Свободно передвигающийся барьер позволяет увеличивать или уменьщать поверхность пленки, в то время [ ак стрелка динамометра позволяет измерять усилие, возникающее в крутильном устройстве в [c.61]

    Раствор пальмитиповой кислоты 16H32O2 в бензоле содержит 4,24 г/л кислоты. Когда раствор наносят на поверхность воды, то бензол испаряется, и пальмитиновая кислота образует сплошную мономолекулярную пленку. Какой объем раствора нужно взять, чтобы таким монослоем покрыть поверхность площадью 500 см Площадь, занимаемая одной молекулой пальмитиновой кислоты на поверхности воды, равна 21А . [c.86]

    Чтобы получить представление о строении адсорбционного слоя на поверхности раздела, рассмотрим результаты исследования строения пленок, образуемых при нанесении на поверхность воды различных жидкостей, мало растворимых в воде. Небольшое количество такой жидкости, нанесе нноё на неограниченно большую поверхность воды, либо образует линзообразную каплю, когда притяжение молекул жидкости больше друг к другу, чем к молекулам воды, либо растекается по воде, образуя тончайший мономолеку-. лярный слой, когда притяжение молекул жидкости к воде больше, чем друг к другу. Образование капель наблюдается в том случае, когда наносимая на поверхность воды жидкость неполярна. Растекание и образование мономолекулярного слоя происходит тогда, когда молекулы жидкости дифильны. Растекающимися на поверхности воды, но практически не растворяющимися в ней являются высшие жирные кислоты, спирты, амины. [c.128]


Смотреть страницы где упоминается термин нки мономолекулярные, на воде: [c.413]    [c.158]    [c.73]    [c.244]    [c.364]    [c.125]    [c.73]    [c.73]    [c.58]    [c.222]    [c.158]    [c.229]    [c.86]    [c.142]   
Физика и химия поверхностей (1947) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

При мономолекулярная



© 2025 chem21.info Реклама на сайте