Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсационное образование дисперсных систем

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]


    Пены — концентрированные дисперсные системы типа Г/Ж — имеют значительно большее распространение и значение, чем га- зовые эмульсии. Они могут быть получены как диспергационными, так и конденсационными методами. Пена получается при барбота-же газа в жидкость из узкого отверстия — струя газа разрывается, образуя пузырьки. Пена образуется и при механическом перемешивании газа с жидкостью. Это можно наблюдать прн флотации, стирке и других процессах. Примерами конденсационного метода являются образование пены при пользовании пенным огнетушителем, в газированных напитках, насыщенных СО2. В этих системах пузыри газов образуются в виде новой фазы в результате химической реакции или выделения растворенного газа при повы-щении температуры или уменьшении давления. Устойчивость пен, как и эмульсий, обеспечивается с помощью стабилизаторов, в ка честве которых применяются ПАБ. [c.187]

    Образование твердых тел с характерными для них механическими свойствами также теснейшим образом связано с процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений, представляющих собой, соответственно, коагуляционные и конденсационные структуры. [c.14]

    Дисперсные системы, в том числе коллоидные растворы, могут быть получены двумя альтернативными путями — измельчением крупных частиц дисперсной фазы или образованием этой фазы из молекул, изначально находившихся в гомогенной системе, при соответствующем изменении ее состояния или состава (конденсационные методы). [c.319]

    В отдельных случаях, когда коагуляция частиц дисперсной фазы приводит к образованию сплошного пространственного структурного каркаса, охватывающего весь объем дисперсной системы, следует обратить особое внимание на понятие фазовой устойчивости, которая считается результатом потери системой агрегативной устойчивости. В этих случаях образуются конденсационные структуры с фазовыми контактами, являющиеся результатом срастания частиц с образованием качественно новой фазы. Подобные необратимые структуры отличаются повышенной прочностью и хрупкостью. Ярким примером рассматриваемого процесса является коксование, когда жидкая коксующаяся масса переходит в твердую пену — кокс, [c.24]


    Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в ме-тастабильном состоянии, например,кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой, метастабильной. Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты работы, - стадию образования зародышей новой фазы, отделенных от старой фазы поверхностью раздела. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуются местные пересыщения - флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения. [c.39]

    Одним из методов синтеза коллоидных систем является конденсационный. Образование коллоидных систем в результате конденсации — это процесс кристаллизации, а образовавшиеся частицы представляют собой мельчайшие кристаллики [3]. В зависимости 01 величины растворимости вещества дисперсной фазы в дисперсионной среде в результате конденсационных процессов могут образоваться дисперсные системы от высокодисперсных золей до грубодисперсных суспензий. Как известно [1—4], суспензии имеют большое практическое значение. Рассмотрим несколько примеров практического применения процесса рекристаллизации, происходящего в условиях периодического колебания температуры или концентрации дисперсионной среды. [c.187]

    Дисперсные системы занимают промежуточное положение между макроскопическими гетерогенными системами и молекулярными растворами — гомогенными системами. Это обусловливает возможность возникновения дисперсных систем двумя путями диспергированием макроскопических фаз (диспергационный путь образования) и конденсацией из истинных растворов или однокомпонентных гомогенных систем (конденсационное образование). [c.112]

    Данная глава касается преимущественно образования лиофобных дисперсных систем при этом предполагается, что их стабилизация тем или иным путем обеспечена. Наряду с изложением основ термодинамики дисперсных систем наибольшее внимание здесь уделено теории конденсационного образования таких систем в процессах выделения новой фазы из исходной метастабильной системы. Основные закономерности диспергирования рассматриваются преимущественно в заключительной гл. XI, посвященной физико-химической механике. [c.112]

    Анализ многообразных свойств структур в дисперсных системах позволил П. А. Ребиндеру разделить их на два основных класса, различающихся по видам взаимодействия частиц дисперсной фазы. Исходя из того, что коагуляция соответствует первичному п вторичному минимуму потенциальной кривой взаимодействия частиц, он предложил различать конденсационно-кристаллизационные и коагуляционные структуры. Конденсациоиио-кри-сталлизацпонное структурообразование, отвечающее коагуляции в первичной потенциальной яме, происходит путем непосредственного химического взаимодействия между частицами и их срастания с образованием жесткой объемной структуры. Если частицы аморфные, то структуры, образующиеся в дисперсных системах, принято называть конденсационными, если часпщы кристаллические, то структуры являются кристаллизационными. При непосредственном срастании частиц механические свойства структур соответствуют свойствам самих частиц. Конденсационно-кристаллизаци-онные структуры типичны для связнодисперсных систем, т. е. систем с твердой дисперсионной средой. Такие структуры придают телам прочность, хрупкость и не восстанавливаются после разрушения. [c.365]

    Рассмотренные в предыдущих параграфах процессы возникновения и роста зародышей новых фаз лежат в основе конденсационных путей образования дисперсных систем. Образование систем высокой дисперсности по конденсационному механизму возможно, если, с одной стороны, возникает достаточно большое число зародышей новой, термодинамически более стабильной фазы и, с другой стороны, скорость роста этих зародышей лежит в области определенных (умеренных) значений. Для возникновения устойчивой несвязной системы необходимо также наличие факторов, препятствующих объединению (агрегированию) частиц дисперсной фазы. Подробно этот вопрос обсуждается в гл. IX. Дисперсность образующейся системы определяется соотношением скоростей возникновения и роста частиц дисперсной фазы, а для слабо стабилизованных систем — еще и скоростью процессов их разрушения (и временем, прошедшим после их возникновения). [c.134]

    Помимо конденсационных структур, возникающих из метастабильных и лабильных растворов в условиях значительных пересыщений, приводящих к возникновению трехмерных каркасов из твердой полимерной фазы, способных разрушаться лишь необратимо с образованием новых поверхностей раздела, известны также коагуляционные структуры. В противоположность конденсационным, коагуляционные структуры возникают в дисперсных системах, не способных к коалесценции и прочному срастанию, в отсутствие пересыщений [32]. Частицы дисперсной фазы в коагуляционных структурах образуют структурную сетку под влиянием специфических сил коагуляционного взаимодействия, т. е. ван-дер-ваальсо- [c.326]


    Дисперсная система с большим количеством жидкости (Т Ж= == 1 1—3 1) обладает вяжущими свойствами, если она способна в процессе химического взаимодействия между дисперсной фазой и средой повышать концентрацию твердой фазы, самопроизвольно переходя в стесненное состояние. При практическом применении порошок смешивают с жидкостью, при этом образуется концентрированная паста — дисперсная система, в которой происходит взаимодействие между жидкой и твердой фазами. В результате взаимодействия образуются новообразования, для которых характерны наличие в структуре полярных групп (молекул воды или гидроксильных групп в гидратах) и высокая удельная поверхность. С некоторого момента времени система начинает загустевать и превращается в капиллярно-пористую структуру — в искусственный камень. Следовательно, происходит конденсация дисперсной системы, причем межзерновая конденсация —- на макроуровне. Образование прочной структуры (камня), по образному выражению П. А. Рё-биндера, связано с синтезом прочности и определяется (по данным различных исследователей) проявлением большого числа сил и взаимодействий водородных связей, межзерновых поляризационных взаимодействий частиц с дипольной структурой, поверхностной межзерновой сшивкой за счет молекул воды,- встраивающихся в структуру, проявлением координационной связи, развитием поли-конденсационной поверхностной межзерновой сшивки. Для того чтобы произошла конденсация дисперсной вяжущей системы, необходимы определенные условия. Только при определенных минимальных начальных значениях Т Ж начинается отвердевание системы. Развитие высокой прочности возможно только с момента само произвольного достижения системой другого граничного (более высокого) значения Т Ж, названного стесненным состоянием. Это свя-,зано с тем, что перечисленные выше силы — короткодействующие, и взаимодействия в системе реализуются, если расстояния между частицами существенно сокращаются. Генерирование в вяжущей  [c.455]

    Согласно классификации, применяемой ко всем дисперсным системам, рассмотрим два основных способа образования аэрозолей конденсационный, в котором частицы коллоидных размеров образуются путем агрегации молекул, и дисперсионный, в котором мелкие частицы образуются путем дробления вещества. [c.16]

    Механические свойства концентрированных систем, в которых частицы дисперсной фазы имеют сольватные оболочки, все же обычно значительно ниже механических свойств систем с коагуляционными и конденсационно-кристаллиза-ционными структурами. Кроме того, благодаря образованию сольватных оболочек у частиц система пластифицируется, понижается ее прочность и у нее появляются пластично-вязкие свойства, тогда как при возникновении пространственных структур повышаются упруго-хрупкие свойства системы. [c.322]

    По агрегатному состоянию частиц аэрозоли классифицируют на туманы (ж/г) — дисперсная фаза состоит из капелек жидкости, дымы (т/г) — аэрозоли с твердыми частицами конденсационного происхождения, п ы л и (т/г) —твердые частицы, образованные путем диспергирования. Возможны системы смешанного типа, когда на твердых частицах конденсируется влага. Так возникает смог — туман, образовавшийся на частичках дыма. [c.447]

    В основе конденсационных методов лежит процесс образования частиц дисперсной фазы из вещества, находящегося в молекулярном или ионном состоянии. Необходимое требование создать пересыщенный раствор, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических и химических условиях. [c.104]

    Эти методы также основаны на конденсационном выделении новой фазы из пересыщенного раствора. Однако в отличие от физических методов, вещество, образующее дисперсную фазу, появляется в результате химической реакции. Таким образом, любая химическая реакция, идущая с образованием новой фазы, может быть источником получения коллоидной системы. [c.23]

    Изучение проблемы образования пространственных структур в суспензиях привело к возникновению самостоятельной области науки — физико-химической механики дисперсных систем [264]. Основное содержание этого научного направления — исследование и нахождение условий получения твердых тел с определенными механическими свойствами. Свойства пространственных структур зависят, главным образом, от. того, существуют или отсутствуют мел<ду частицами тонкие слои дисперсионной среды. В первом случае речь идет о флокулированных системах (коагуляционные структуры), во втором — о коалесцированных системах (конденсационные структуры) [265, 266] .  [c.133]

    В учении о фазовых равновесиях области метастабильных состояний часто именуются областями расслоения или разделения на две фазы. В действительности сами процессы разделения на две фазы гомогенных систем, попавших в эти области, могут протекать чрезвычайно медленно. В особенности затруднено разделение на две фазы стеклообразных гомогенных растворов. Правильнее поэтому говорить лишь о метастабильных состояниях, т. е. об относительной термодинамической неустойчивости этих систем. Это необходимо еще и потому, что образование новой фазы из равновесных стабильных систем невозможно. Коллоидные частицы новой фазы могут возникать только в пересыщенных, метастабильных системах. Отчетливое понимание этого обстоятельства является основой для целеустремленного использования конденсационных методов получения дисперсных систем и дисперсных структур, в частности высокомолекулярных. [c.59]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    Эмульсии — это дисперсные системы, образованные двумя несмешивающимнся жидкостями. Их получают как конденсационными, так и днспергационнымн методами. На практике чаще используют диспергирование. Как и суспензии, эмульсин обычно подразделяют по размерам частиц и концентрациям дисперсной фазы. [c.186]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    В гл. 1 мы показали, что дисперсные системы образуются либо при раздроблении большой фазы, либо при конденсации молекул в пересыщенной системе. Поэтому конденсационное образование новой фазы представляет собой чрезвычайно важный, фундаментальный вопрос коллоидной химии. К сожалению, теория этого процесса и его экспериментальное исследование далеки от своего завершения. В настоящее время наиболее удовлетворительные результаты получены для самого простого случая — образования новой фазы в газовой среде, т. е. образования аэрозоля. По этой причине в нашем кратком изложении мы ограничимся только примерами из области аэрозолей. Но чтобы подчеркнуть общее значение этого вопроса, мы решили в настоящем издании поместить его в об1цей части курса. [c.95]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]

    П. Получение и свойства дисперсных (лиофобных) систем. Этот раздел начинается с анализа термодинамики и кинетики процессов зарождения новой (высокодисперсной) фазы в условиях метастабильности исходной системы, т. е. конденсационных путей образования дисперсных систем диснергационные методы затрагиваются лишь частично, будучи отнесены к заключительному разделу книги. Далее следует относительно сжатое описание неспецифических свойств дисперсных систем мoлeкyляpнo- кинeтичe киx (броуновское движение, диффузия, осмос, седиментационно-диффузионное равнове- [c.12]

    Наиболее важной задачей является выяснение механизма и количественных закономерностей конденсационных процессов образования дисперсных систем в связи с кинетикой образования новых фаз и особенно твердых тел, развитие теории диопергирования твердых тел различного рода на основе современных представлений о механизме их деформации и разрушения, разработка общей теории структурообразования, возникновения и развития коагуляционных, конденсационных и кристаллизационных пространственных структур в дисперсных системах. Исследования в этой области должны привести к установлению связи особенностей таких структур, кинетики их дальнейшего развития и старения при различных условиях с их механическими свойствами (прочностью, упругостью, пластичностью, вязкостью). Большое научное значение этих задач неразрывно связано с различными важнейшими народно-хозяйствен- [c.334]

    Согласно представлениям, излошепным выше, получение кристаллических коллоидных частиц рассматривается как особый случай кристаллизации из пересыщенных растворов. Однако Каргин с сотрудниками установили, что в очень многих случаях получения коллоидных систем конденсационными методами дисперсная фаза возникает сначала в виде относптельио больших, обычно сферических аморфных образований. Затем эти образования кристаллизуются и распадаются па более мелкие частицы в результате возникающих прп кристаллизации напряжений. На скорость кристаллизации оказывает весьма сильное влияние температура, при которой проводят синтез коллоидной системы конденсационным методом.— Прим. ред. [c.15]

    При образовании конденсационных с т р у к т у р трехмерный каркас возникает путем пространственной полимеризации, когда между дисперсными частицами начинают действовать химические или водородные связи, т. е. связи значительно более прочные, чем ван-дер-ваальсовы. Поэтому дисперсные системы, имеющие конденсационную структуру, отличаются высокой механической прочностью. Внешние силы (при достаточной их величине) разрушают эти структуры необратимо, т. е. они не являются тиксотропными (отличие от коагуляционных структур). Примером дисперсных систем, имеющих конденсационную структуру, может служить студень кремневой кислоты. [c.446]

    Теория образовапия новой (дисперсной) фазы, возникновения и роста зародышей в метастабильной среде. Конденсационные методы образования диснерсных систем. 4) Теория устойчивости, коагуляции и стабилизации различных дисперсных систем, включающая строение частиц дисперсной фазы (см. Мицеллы). 5) Физико-хи.иическая механика дисперсных систем, включающая теорию механического диспергирования, образовапия новых поверхностей в процессах деформации и разрушения твердых тел, влияние понижения поверхностной энергии (в результате адсорбции) на механические свойства и дисперсную структуру деформируемого твердого тела, явления дисперсного упрочнения. Образование пространственных структур в дисперсных системах и механич. свойства таких структур (тиксот репные коагуляционные структуры, конденсационные и кристаллизационные структуры), точения структури- [c.322]

    Размеры рассмотренных участков реологической кривой могут быть самыми различными в зависимости от природы системы и условий, при которых проводят испытания механических свойств (например, температуры). В коагуляционных структурах систем с твердой дисперсной фазой предел упругости растет с увеличением концентрации частиц и межчастичного взаимодействия. В этом же наиравлении уменьшается область текучести. Для материалов, имеющих кристаллизационную структуру, например для керамики и бетонов, характерны большая (по напряжениям) гуковская область деформаций и практическое отсутствие области текучести — раньше наступает разрушение материала (хрупкость). Поэтому им не свойственны ни ползучесть, ни тиксотропия. Для полимеров с конденсационной структурой наиболее типичны релаксационные явления, включая проявление эластичности, пластичности и текучести. Доля Гуковской упругости в них возрастает с ростом содержания кристаллической фазы. Наличие области текучести у полимеров объясняют разрушением первоначальной структуры и возникновением определенного ориентирования макромолекул, надмолекулярных образований и кристаллитов. По окончании такой переориентации наблюдается некоторое упрочнение материала, а затем с ростом напряжения материал разруилается. В какой-то степени промежуточными реологическими свойствами между свойствами керамики и полимеров обладают металлы и сплавы. У них меньше области гуковской упругости (по напряжениям), чем [c.380]

    Конденсационный путь образования Д.с. связан с зарождением новой фазы (или новых фаз) в пересьпценной метастабильной исходной фазе-будущей дисперсионной среде. Для возникновения высокодисперсной системы необходимо, чтобы число зародышей новой фазы было достаточно большим, а скорость их роста не слишком велика. Кроме того, требуется наличие факторов, ограничивающих возможности чрезмерного разрастания и сцепления частиц дисперсной фазы. Переход первоначально стабильной гомог. системы в метастабильное состояние может произойти в результате изменения термодинамич. параметров состояния (давления, т-ры, состава). Так образуются, напр., природные и искусственные аэрозоли (туман - из переохлажденных водяных паров, дьпкШ-из парогазовых смесей, выделяемых при неполном сгорании топлива), нек-рые полимерные системы-из р-ров при ухудшении термодинамич. качества р-рителя, органозоли металлов путем конденсации паров металла совместно с парами орг. жидкости или при пропускании первых через слой орг. жидкости, коллоидно-дисперсные поликристаллич. тела (металлич. сплавы, нек-рые виды горных пород и искусств, неорг материалов). [c.81]

    ТИМО, существуют дисперсные структуры с непосредственными фазовыми контактами, у которых энергия связи в контактах велика (Е /сТ). Эти системы являются необратимо разрушающимися, т. е. нетиксотропными пространственными сетками. К ним относятся конденсационно-кристаллизационные структуры, возникающие в процессах образования новой дисперсной фазы из переохлажденных расплавов или пересыщенных растворов. Образующиеся при этом зародышевые кристаллики новой фазы срастаются в более или менее плотной кристаллизационный каркас. Именно кристал лизационно8 структурообразование лежит в основе твердения минеральных вяжущих материалов. Механизм и закономерности возникновения и развития дисперсных структур твердения с учетом лежащих в их основе физических и химических превращений были исследованы Ребиндером и Сегаловой [11]. [c.54]


Смотреть страницы где упоминается термин Конденсационное образование дисперсных систем: [c.354]    [c.620]    [c.620]    [c.418]    [c.292]   
Смотреть главы в:

Коллоидная химия 1982 -> Конденсационное образование дисперсных систем

Коллоидная химия 1992 -> Конденсационное образование дисперсных систем




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Дисперсные системы конденсационные



© 2025 chem21.info Реклама на сайте