Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки глобулярные и кристаллические

    Согласно новым представлениям белки делятся на две морфологически различные группы — глобулярные и фибриллярные белки. К первым относятся кристаллические, в большей или меньшей степени растворимые в воде или солевых растворах вещества, молекулы которых по форме напоминают uiap, эллипсоид вращения, цилиндр или диск. Примерами таких белков могут служить гемоглобин и миогло-бин. Выводы о форме их молекул сделаны на основании вискозиметри-ческих, рентгенографических, осмометрическнх измерений и электронной микроскопии. [c.396]


    Четкие результаты для большого числа белков, играющих жизненно важную биологическую роль, связанную с их нерастворимостью и механическими свойствами, были получены с помощью дифракции рентгеновских лучей, и эти результаты являются примером раннего использования техники, которая в последующее время была усовершенствована настолько, что с ее помощью были установлены полные структуры ряда кристаллических глобулярных белков. Растянутая или р-форма кератина демонстрирует пример р-слоев как с параллельным, так и с антипараллельным расположением пептидных цепей (см. рис. 23.7.4). Так, в фиброине щелка найдено только параллельное расположение этих цепей с близким к планарному расположением слоев, тогда как в кератине имеет место складчатая структура. Нерастянутая или а-форма кератина является примером а-спирали в ее наиболее компактной форме, в которой пять оборотов правой спирали включают 18 остатков аминокислот — следовательно, система может быть описана как спиральная конформация с шагом в 3,6 остатка. Из рассмотрения молекулярных моделей видно, что предпочтительна правая спиральность, поскольку по сравнению с положением в левой спирали полипептида, образованного из остатков -аминокислот, боковые радикалы в правой спирали располагаются наружу от оси спирали, так что дестабилизирующие отталкивания, затрагивающие, в частности, карбонильные группы, сводятся к минимуму (см. рис. 23.7.3). [c.428]

    Белки (глобулярные и кристаллические). Если кажется вполне вероятным, что структурной единицей свернутых синтетических полипептидов является а-спираль, то очень [c.320]

    НЫ, состоящие полностью из мономера А, ведут себя, как типич-ице полиэлектролиты, т. е. обладают высокой характеристической вязкостью, которая понижается при увеличении ионной силы, (На рисунке приведены данные только для одного значения ионной силы.) В этом случае не проводились опыты с растворами, имеющими достаточно высокую ионную силу и приближающимися к идеальным, но предельная минимальная идеальная характеристическая вязкость была оценена на основании данных, полученных для подобных полимеров она оказалась равной 112 сж /г, в случае же раствора с ионной силой 0,0226 эта величина составляет 500 ог /г. При замене мономерных звеньев типа А мономерными звеньями типа В происходит очень сильное уменьшение вязкости, и когда количество звеньев типа В составляет 28,5%, характеристическая вязкость достигает своего минимального значения, равного 4 см г. При сравнении табл. 21 и 27 видно, что это значение [г)] имеет тот же порядок величины, что и соответствующие значения, наблюдаемые для глобулярных белков и кристаллических вирусов. Растворенные макроионы должны быть чрезвычайно компактными, причем внутри их клубков должно быть очень мало растворителя. [c.582]


    Из этого списка ясно, чего необходимо избегать, поскольку целесообразнее, конечно, изучать белки в нативном состоянии, а не их денатурированные компоненты. К счастью, глобулярные белки кристаллизуются в нативном состоянии (что, правда, сопряжено со значительными трудностями), в то время как денатурированные белки не обладают кристаллической структурой. Ведь почти все, что нам известно о вторичной и третичной структуре белков, было установлено при помощи рентгеноструктурного анализа отдельных белковых кристаллов. [c.412]

    Функциональный аппарат клеток состоит в основном из ферментов. Сотни ферментов удалось выделить из живых клеток, очистить и получить в кристаллическом виде. Многие другие обнаруживаются только по их каталитическому действию и в чистом виде пока не выделены. Большинство известных в настоящее время ферментов представляет собой растворимые глобулярные белки, однако каталитическими свойствами могут обладать и структурные белки клетки. Так, актин и миозин совместно катализируют гидролиз АТР (гл. 4, разд. Е). (Следует, однако, заметить, что пока неясно, как эта ферментативная реакция сопряжена с сокращением мышечных волокон.) [c.5]

    Мочевина (карбамид) и родственные ей соединения являются одними из главных продуктов метаболизма живого организма. Важную роль играет это соединение в конформационной стабильности глобулярных белков. В гл. 3 на молекулярной основе рассмотрены структур-но-термодинамические (объемные) свойства H/D-изотопомеров кристаллической мочевины и ее растворов, механизм межчастичных взаимодействий в системе вода-карбамид и влияние температуры на конфигурационные параметры данной системы. [c.6]

    На рис. 11.32, а приведена зависимость частот встречаемости различных форм основной цепи дипептидных фрагментов (не содержащих остатков Gly) от значений угла 0 в 50 глобулярных белках, трехмерные структуры которых найдены методом рентгеноструктурного анализа с хорошим разрешением ( 2,6 А). На рис. П.32, б приведены аналогичные данные для дипептидов, включающих хотя бы один остаток Gly. Кривые на обоих рисунках представляют собой огибающие вершины прямоугольников, ширина каждого из которых равна 20° в шкале 0, а высота - частоте встреч в структурах отобранных белков дипептидных фрагментов определенной формы с углами 0, попадающими в соответствующий 20-градусный интервал. Полученное распределение опытных величин (число их > 7000), очевидно, не может вызвать каких-либо сомнений в экспериментальной обоснованности классификации форм основной цепи дипептидных фрагментов на два типа - шейпы fue. Формы R-R, R-B и B-L составляют шейп /, а формы В-В, B-R и R-L - шейп е. Редко встречаемые в кристаллических структурах белков формы дипептидных участков L-R, L-B и L-L могут занимать промежуточное положение. Кривые на рис. 11.32 имеют несколько диффузный характер, что отражает, с одной стороны, действительный разброс значений угла 0 в структурах белков, т.е. конформационную свободу остатков, а с другой - экспериментальные ошибки в определении значений ф и V /, которые могут составить 10-15°. Однако несмотря на большую ширину полос, нельзя не заметить их дублетную, а в ряде случаев триплетную структуру. Это указывает на существование у всех форм основной цепи дипептидов двух или трех предпочтительных значений угла 0, обеспечивающих наиболее выгодные взаимные ориентации смежных остатков. Расстояния между максимумами полос распределения всех форм основной цепи равны 40-60°. Отмеченный опытный факт об относительной дискретности распределения значений угла 0 целесообразно учитывать в конформационном анализе пептидов и белков при выборе исходных для минимизации энергии структурных вариантов. [c.226]

    Геометрическая конфигурация пептидной группы, основного структурного элемента белков, хорощо изучена (см. табл. 104). Расстояние N — Н.. . 0 в настоящее время определено с высокой] точностью (2,94 А), тогда как углы, в вершинах которых находятся атомы N и О, известны гораздо хуже. Поэтому вопрос о линейности Н-связи до сих пор остается открытым. Значения длины связей и углов, найденные для пептидной группы, использованы при построении спиральных структур, которые согласуются с большинством известных свойств основной цепи кристаллических белков и ДНК и в которых отчетливо видна важная роль Н-связи. Относительно боковых цепей в этих молекулах, а также в глобулярных белках делались лишь умозрительные заключения, но и в них Н-связи отводится важная роль. [c.277]

    Белки, обладающие специфическим физиологическим действием. Живые организмы содержат многочисленные белки, обладающие специфическими свойствами и играющие важную роль в физиологических процессах. Многие из них легко растворимы, причем их растворы обладают небольшой вязкостью. Эти белки имеют глобулярную конформацию. Их существование было впервые обнаружено по их активности многие из них были выделены впоследствии в чистом кристаллическом состоянии. Растворимость этой группы белков сходна с растворимостью глобулинов (их можно извлекать солевыми растворами) они легко подвергаются денатурации. Напротив, другие белки имеют небольшие молекулярные веса и сравнительно устойчивы к нагреванию. Эти белки но физиологической активности делятся на несколько классов. [c.446]


    Глобулярные белки их спирально построенные молекулы свернуты в клубки, некоторые удалось выделить в кристаллическом виде. Сюда относятся гемоглобин и особенно ценные пищевые белки. [c.275]

    Рентгенографическое исследование других кристаллических глобулярных белков еще не доведено до такой стадии, которая достигнута в изучении миоглобина и гемоглобина. Предварительные результаты указывают на то, что отсутствие регулярности, наблюдаемое для гемоглобина и миоглобина, в основном типично для глобулярных белков. Кроме того, возможно, что-содержание спиралей в других белках значительно ниже . [c.85]

    Некоторые вирусы были получены в истинно кристаллической форме, и единичные кристаллы этих вирусов были исследованы рентгенографически. Для этих вирусов можно рассчитать размеры элементарной ячейки и молекулярные веса. Данные для двух вирусов приведены вместе с подобными данными для глобулярных белков в табл. 1. Наиболее замечательной особенностью вирусов являются необычайно большие размеры элементарной ячейки и соответственно большой молекулярный вес. Из имеющихся для вирусов данных можно сделать еще одно заключение о том, что частицы вирусов (двух вирусов, приведенных в табл. 1) должны, подобно молекулам глобулярных белков, быть компактными и по форме близкими к сфере. Вирус кустистой карликовости помидора, кристаллизующийся в объемноцентрированной кубической решетке, надо полагать, в действительности имеет упаковочную единицу совершенно сферически симметричную, хотя, конечно, кроме частицы вируса в эту упаковочную единицу входит растворитель. [c.87]

    Глобулярные белки и вирусы, которые попадают в класс III, в кристаллическом состоянии имеют специфическую общую форму молекул, их молекулы часто компактны и симметричны. Было указано, что природа сил, приводящих к такой форме молекул, еще не установлена, и потому любые попытки представить, что может произойти с этими молекулами в растворе, носят чисто предположительный характер. Однако важно то, что все эти молекулы были выделены из водной среды живых систем, что они обычно кристаллизуются из водных растворов и что кристаллы обязательно содержат воду в количествах, которые можно изменять в значительных пределах, не меняя кристаллической структуры. Эти факты заставляют думать, что структура, которая свойственна данным молекулам в твердом состоянии, может оставаться неизменной в водном растворе, где непосредственное окружение молекул подобно тому, которое имеет место в кристаллическом состоянии. Неводные растворители, конечно, изменяют окружение макромолекул, и поэтому можно ожидать, что это приведет к возникновению новых структур (существование которых невозможно предсказать). [c.151]

    Необходимо упомянуть также, что наряду с пачками макромолекул в полимерных телах наблюдаются и совершенно иные образования. В ряде случаев гибкие макромолекулы свертываются в хаотические или упорядоченные клубки, каждый из которых состоит всего лишь из одной макромолекулы. Такие клубки, называемые глобулами, встречаются как в аморфных, так и в кристаллических полимерах. Они, как и пачки, могут быть элементами более крупных структурных образований (известны, например, глобулярные кристаллы полимеров), а также располагаться между пачками в аморфных полимерах и между пачечными надмолекулярными структурами в кристаллических полимерах. Глобулярные структуры имеют особое значение в биологии, так как многие белки и вирусы, являясь [c.227]

    Данные о гидродинамических свойствах белков в растворе и оценка размеров элементарной ячейки, полученная с помощью рентгеноструктурного анализа кристаллических белков, свидетельствуют о компактности и жесткости белковой молекулы. Эти свойства белка нельзя объяснить одной лишь вторичной спиральной структурой, даже если принять во внимание наличие дисульфидных связей и остатков пролина. Легкость, с которой эта компактность может быть нарушена, свидетельствует вместе с тем о том, что структура стабилизирована не ковалентными связями. Стабилизация плотно свернутой третичной структуры глобулярных белков достигается за счет взаимодействия боковых цепей аминокислотных остатков, обладающих указанными выше химическими свойствами. Силы взаимодействия каждая в отдельности не велики ионное взаимодействие, водородные связи, гидрофобное взаимодействие и вандерваальсовы силы. Но поскольку число этих слабых связей очень велико и все они действуют одновременно по всей свернутой структуре белка, она обладает достаточной устойчивостью при обычной температуре. Оценить относительное значение связей различного типа в поддержании третичной структуры очень трудно и на этот счет еще нет единого мнения. [c.26]

    Первая — Это кристаллическая Структура, построенная по прин-ципу плотной упаковки шароо. Такие кристаллические образования наблюдаются у так называемых глобулярных белков, глобулы которых остаются устойчивыми даже при непосредственном кон-такт Друг с Другом. Возможность образования кристаллической структуры При этом обусловлена одинаковым размером всех ша-риков, мто связано с мопомолекулярностью природных высокомолекулярных соединеннй. [c.133]

    Проанализировав существовавшие к тому времени алгоритмы предсказания (Е. Каба и Т. Ву [133-135], Б. Робсона и Р. Пейна [136, 137], П. Чоу и Г. Фасмана [138, 139], Г. Шераги и соавт. [39]), А. Бэржес и Г. Шерага констатировали, что ни один из них не может быть использован для достижения поставленной цели. Затем они переводят свою задачу в гипотетическую область и ведут поиск решения с идеальным алгоритмом предсказания. На основе известной кристаллической структуры БПТИ, а не эмпирических корреляций, авторы относят 58 аминокислотных остатков белка к 5 конформационным состояниям (а , а , е, ), отвечающим экспериментальным данным и низкоэнергетическим областям потенциальной поверхности конформационной карты p-V /. Каждому состоянию они приписывают усредненные по известным кристаллическим структурам восьми белков соответствующие значения углов ф, j/. Двугранные углы боковых цепей (%) были взяты с округлением до 5° из рентгеноструктурных данных для молекулы БПТИ. Вопреки ожиданиям оказалось, что построенная таким образом трехмерная структура даже отдаленно не напоминает конформацию белка. Ситуация не улучшилась и при минимизации энергии с учетом невалентных взаимодействий. Сравнение контурных карт расстояний между атомами С модельной и опытной конформаций показывает, что в собранной с помощью идеального алгоритма экспериментальной геометрии боковых цепей и проминимизированной трехмерной структуре отсутствуют все характерные особенности нативной конформации удалены друг от друга цистеиновые остатки, образующие между собой дисульфидные связи, практически нет намека на вторичные структуры и не воспроизводится глобулярная форма молекулы трипсинового ингибитора. Для исправления положения были введены дополнительные ограничительные условия, облегчающие приближение модельной структуры к нативной конформации. Однако ни учет реализуемой в белке системы дисульфидных связей (5-55, 14-38, 30-51), ни введение сближения соответствующих остатков ys, ни включение в расчет специальной функции, имитирующей стремление неполярных остатков оказаться внутри глобулы, а полярных выйти наружу, ничто не помогло получить пространственную форму белка, близкую к нативной. Конечно, можно было бы еще более ужесточить условия и добиться совпадения. Но это не имело бы значения, поскольку не повлияло бы на окончательный вывод о невозможности даже в случае 100%-ного правильного предсказания конформационных состояний остатков получить структуру, отдаленно напоминающую реальный белок. [c.502]

    В течение многих лет выделение в кристаллических структурах глобулярных белков а-спиралей и -складчатых листов делалось в значительной мере произвольно, без использования количественных критериев. Необходимость в них не ощущалась бы, если бы в нативных конформациях белков вторичные структуры были действительно регулярными. Поскольку этого нет, то их идентификация субъективна и существенно отличается у разных авторов. Например, в лизоциме Чоу и Фасман [139] к а-спиралям и -структурам относят соответственно 54 и 21 остаток, а Бэржес, Поннусвами и Шерага [39] - 46 и 4 в субтилизине BPN (отнесения работы [39] даны в скобках) - 86 (69) и 27 (44), папаине - 54 (50) и 30 (21). Подобных примеров можно привести много. [c.510]

    Например, в кристаллах миоглобина и гемоглобина их от 5 до ю лизоцима - всего 5. Дж. Рапли, детально изучивший этот вопрос, в своем обзоре пишет "...кристалл глобулярного белка можно рассматривать как упорядоченный и открытый ансамбль компактных молекул, имеющих почти что минимальный контакт с областью, не занятой твердым веществом. Эта область составляет около половины объема кристалла-она непрерывна, заполнена растворителем, аналогичным основной массе жидкости, и состоит из каналов, способных вместить молекулы соединений с молекулярной массой более 4000 [354. С. 257]. Полностью исключить возможность отклонения структуры белка в кристалле от структуры в растворе тем не менее нельзя. Но несомненно и то, что в большинстве случаев изменения могут коснуться только положений некоторых боковых цепей в областях контактов на периферии глобулы. Вероятность, что конформационные нарушения произойдут, и произойдут именно в активном центре, невелика, конечно, в том случае, когда кристаллизация осуществляется в условиях, близких к тем, при которых фермент или другой белок проявляет активность. При идентичности структур фермента в кристалле и растворе различия в эффективности катализа могут быть обусловлены лишь разными условиями диффузии субстрата и продуктов реакции и стерическими затруднениями для конформационных перестроек активного центра. Дж. Рапли по этому поводу замечает "...кристаллический белок обладает ферментативной активностью, и, хотя его свойства несколько отличаются от свойств растворенного белка, сам факт каталитического действия кристаллического фермента служит достаточно убедительным аргументом против предположения о большом изменении конформации в процессе кристаллизации [354. С, 271]. Таким образом, можно заключить, что рентгеноструктурные данные почти всегда правильно отражают укладку основной цепи белка и, как правило, буквально воспроизводят биологически активную конформацию. Поэтому все, что говорится Меклером и Идлис о "жидком" и "твердом белке, по моему мнению, представляется глубоко ошибочным и выглядит не более, чем попыткой спасти идею стереохимического кода. Неудачно также отождествление жидкого" белка с "расплавленной глобулой". Трудно предположить, что короткоживущее промежуточное состояние, которое возникает на последней стадии свертывания полипептидной цепи и о котором пока имеется лишь туманное предствление, является активной формой белка, способной функционировать длительное время. [c.538]

    Модель жестких сфер — хорошее приближение. Данные Рамачандрана и сотр. [28, 29], выражаемые -картой (которую часто называют карта Рамачандрана , см. рис. 2.3, б), подтверждаются результатами, полученными при исследовании кристаллических глобулярных белков. На рис. 2.4 сведены все ф и ф-углы, найденные в 13 белках. Самая высокая плотность распределения экспериментальных точек наблюдается вблизи (—60 , —60 ) в положении правой а-спирали, что отражает высокое содержание а-спиралей в глобулярных белках. Другой максимум в распределении находится вблизи (—90°, -г 120 ) и отвечает вытянутой цепи с остатками, образующими р-складчатый лист. Поскольку плотность вблизи (—90 , 0 ) также довольно высока, отталкивание между N,- и Hj i не настолько существенно, как это следует из модели жестких сфер. [c.32]

    ВХОДИТ в кристаллическую решетку ПОМБИ по аналогии с тем, как гидратная вода необходима для образования кристаллов глобулярных белков [5]. [c.59]

    С точки зрения физиологических процессов белки и протеиды представляют важнейший класс природных полимеров. Неисчерпае-люе многообразие структур, обусловливаемые ими свойства и функции организмов иллюстрируют возможности, возникающие перед химией высокомолекулярных соединений, и одновременно трудности, связанные с изучением этих продуктов. Так, например, имеются фибриллярные и глобулярные, волокнообразующие и эластичные, растворимые и сшитые, кристаллические и аморфные белки. Все типы белков характеризуются двумя общими свойствами  [c.97]

    В современных теориях устойчивости дисперсных систем [1—3] особое место занимает структурно-механический барьер, концепция которого предложена П. А. Ребиндером [4, 5]. Структурно-механический барьер реализуется в дисперсных системах со структурированными межфазными слоями, которые формируются в результате адсорбции из растворов поверхностно-активных, особенно — высокомолекулярных, соединений ВМПАВ и твердых эмульгаторов на межфазных границах различной природы. Такие стабилизирующие слои по сути являются двухмерным твердым телом (по своим реологическим характеристикам) и имеют либо гелеобразную (желатина, поливиниловый спирт), либо кристаллическую (глобулярные белки) структуру [5, 6]. [c.206]

    Фибриллярны и глобулярные белки, как и нуклеиновые кислоты, обладают кристаллической структурой, в которой сходные по общей структуре, но все же различающиеся химически мономерные звенья входят в одну и ту же кристаллическую решетку. Кристаллографический анализ указывает на стереохимнческую идентичность многих аминокислотных остатков и нуклеотидов . При благоприятных обстоятельствах те же особенности наблюдаются и у простых синтетических сополимеров. В подобных случаях говорят, что звенья неспособны сокристаллизоваться. Рентгеноструктурный анализ выявляет при этом лишь одну кристаллическую структуру, присущую главному компоненту. Зависимость температуры плавления от состава в таких системах отлична от наблюдаемой у статистических или упорядоченных сополимеров. [c.116]

    Образование сферолитов характерно не только для полимеров. Впервые этот термин использован при описании поликристаллических структур, обнаруженных в изверженных породах. Сферолитные образования наблюдаются в различных неорганических и органических кристаллических соединениях [83, 84]. Глобулярные белки, такие как, например, фермент карбоксииепти-даза, также кристаллизуются из разбавленного раствора в сферо-литной форме [85]. Как было показано Робинсоном [86], после разделения фаз в разбавленном растворе поли-у-бензил-1--глутамата в спира-лизующих растворителях образуются большие, хорошо очерченные сферолиты (рис. 112) . При наблюдении между скрещенными поляроидами оптическая природа этих сферолитов оказывается той же, что у сферолитов ленточного типа, образующихся при кристаллизации линейных молекул из расплава. Следовательно, вязкость среды не влияет решающим образом на возможность образования сферолитов. Характерная черта сферолитов поли-у-бензил-1-глутамата — появление полос гашения, расположенных по радиусу и хорошо видимых в обычном свете. [c.314]

    В настоящее время исключительно быстрыми темпами развивается изучение структур макромолекул фибриллярных и глобулярных белков, синтетических волокон, каучука, кристаллических вирусов, витаминов и т. д. Важную роль при этом играют методы дифракции рентгеновских лучей. Способность к образованию соединений включения многих из этих соединений только предполагается, и поэтому еще преждевременно обсуждать их подробно. По некоторым соединениям имеется значительное количество сведений, однако окончательное представление о их структуре в большинстве случаев отсутствует. Наличие таких внутримолекулярных изгибов, как в иолипептид-ных цепях, таких скрученных в а-спираль структур, как в а-кератинах, а также разнообразные формы гемоглобина, в которых обнаружены кристаллы чередующихся слоев белка и кристаллизационной жидкости, — все указывает на возможность образования соединений включения. [c.36]

    В кристаллическом виде получены только глобулярные белки фибрилярные белки неспособны кристаллизоваться. Кристаллы белков, растущие из растворов, содержат растворитель, который входит в структуру белка, так что удаление его вызывает потерю кристалличности. [c.339]

    В отличие от фибриллярных белков, которые, как правило, плохо поддаются растворению, глобулярные белки сравнительно легко растворимы. Они выполняют в организме ряд функций участвуют в переносе различных веществ, служат запасными веществами, играют роль биологических катализаторов (ферменты) и т. д. Глобулярные белки могут быть выделены из растворов в кристаллическом виде. На рентгенограммах таких кристаллов наблюдается много резких дифракщшнных максимумов, которые позволяют устанавливать структуру не только повторяющейся структурной единицы, но и особенности строения всей молекулы. Чтобы полностью использовать информацию о структуре крупных молекул, даваемую такими рентгенограммами, необходимо знать значения фаз. Как было указано в гл. XIII, по плотности почернения пятна на пленке можно определить лишь амплитуду соответствующей Фурье-компоненты, пропорциональную корню квадратному из плотности почернения, но не ее фазу. В настоящее время разработан ряд методов, позволяюших решить задачу об определении фаз. В этой главе мы опишем два метода определения фаз и обсудим результаты, полученные для двух белков — миоглобина и гемоглобина. [c.259]

    Метод изоморфного замещения тяжелыми атомами позволил, таким образом, получить для миоглобина разрешение 2 АТеперь, когда многие детали структуры выявлены, оказывается возможным ее последовательное уточнение с помощью прямого синтеза Фурье для кристаллического миоглобина, уже не содержащего тяжелых атомов. Такой синтез был проведен при разрешении 1,4 А и была определена электронная плотность для 500 ООО точек элементарной ячейки. При таких высоких разрешениях возникают новые трудности, одна из которых связана с разрушением кристалла в результате длительного облучения рентгеновскими лучами, необходимого для выявления слабых рефлексов в дальней области дифракционного поля. В этой работе вместо фотографических методов регистрации применялись чувствительные ионизационные методы и полученные данные непосредственно вводились в быстродействующие вычислительные машины, для которых составлялись специальные программы. Вся работа длилась в течение многих лет, причем большая часть времени ушла на усовершенствование техники. Теперь, когда эти трудности преодолены, исследование других глобулярных белков должно пойти быстрее. Однако следует отметить, что миоглобин является относительно легким объектом для анализа, так как он отличается от других глобулярных белков аномально большим содержанием спиральных структур (см. разд. 4 гл. XVI). Это упрощает расчеты методом последовательных уточнений, так как положение значительного числа групп, принадлежащих главной цепи молекулы, известно. [c.266]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]

    Итак, в вытянутой белковой цепи гидратационные оболочки локализуются вокруг ионогенных центров и, следовательно, гидратированные участки чередуются с участками сухими. Такое положение наблюдается у волокнистых или фибриллярных белков, построенных из вытянутых белковых цепей, ассоциированных в волокне по длиннику. К такого рода белкам относятся фиброин шелка (шелковая нить), коллагеновые волокна, миозиновые фибриллы мышц, желатина и ряд других волокнистых образований. Было показано, однако, что наряду с фибриллярными белками в организме распространены и белки другого рода, получившие название глобулярных. К ним, в частности, относятся белки сыворотки крови и молока, белки куриного яйца, ряд клеточных и тканевых белков, различные ферменты. В отличие от фибриллярных белков, всегда ассоциированных в упорядоченный пучок (волокно), белки этого типа дают молекулярные растворы, обладающие коллоидными свойствами (молеку-ляр-коллоиды). При известных условиях белки подобного типа можно получить в кристаллическом виде. Молекула самого простого белка (например, молочный альбумин, миоглобин) состоит из 150 аминокислотных остатков и, следовательно, представляет собой длинную полипептидную цепь. [c.290]

    Некоторые ферменты, как, например, ацетилхолинэстераза красных кровяных шариков, удерживаются стенками клетки или входят в их специфические структуры так прочно, что выделить их удается лишь с трудом или вообще не удается. Вслед за первыми исследованиями Самнера и Нортропа ряд ферментов был получен в кристаллическом виде, многие из них изучены, и было найдено, что они содержат только один активный центр в молекуле. Другие, напротив, обладают несколькими такими центрами, как, например, гемоглобин (мол. вес 68 000), который, впрочем, не является настоящим ферментом, и ката-лаза (мол. вес. 248 000). Эти образования имеют по четыре таких центра, представляющих собой железопорфирированные группы. В случае гидролитических ферментов никакой посторонней (или простетической) группы не найдено и активные центры должны существовать на поверхности самого белка. При помощи рентгеноструктурного анализа [2—4] установлено, что полипептидная цепь —СНК—СОЫН— свернута в спираль, которая удерживается водородными связями между каждой С = 0-группой и ЫН-группой в той же самой цепи через четыре группы. Спирали располагаются рядом и укладываются так, что образуют глобулярную молекулу, причем их относительное расположение точно зафиксировано в результате физического и.химического взаимодействия между боковыми цепями аминокислот. Ламри и Эйринг [5] назвали такое расположение, обусловленное взаимодействием между спиралями, третичной структурой белка. Можно предположить, что простетические группы и активные центры находятся на поверхности белка, хотя в некоторых случаях результаты влияния гидростатического давления наводят на мысль, что происходит некоторое развертывание белка и при этом обнаруживаются активные [c.314]


Смотреть страницы где упоминается термин Белки глобулярные и кристаллические: [c.532]    [c.24]    [c.206]    [c.87]    [c.286]    [c.87]    [c.286]    [c.296]    [c.321]    [c.73]    [c.414]   
Успехи спектроскопии (1963) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Белок кристаллический

Глобулярные белки



© 2025 chem21.info Реклама на сайте