Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства эфиров гликолей

    Химические свойства эфиров гликолей [c.300]

    Это один из вариантов очистки газов физической абсорбцией. В качестве абсорбента применяют диметиловых эфир полиэтилен-гликоля [199, 249—255], основные физико-химические свойства которого приведены ниже  [c.269]

    Аналогичное отрицательное влияние на физико-химические свойства пластификаторов оказывают сложные эфиры монокарбоновых кислот, содержащиеся в исходном спирте илн гликоле. [c.115]


    Приведенные общие формулы эфиров гликолей объединяют практически неограниченное число соединений, которые могут иметь самые разнообразные физико-химические свойства. После разработки технологии синтеза эфиров гликолей из а-окисей в 20-е годы нашего века опи за короткий срок стали одними из самых доступных и распространенных химических продуктов [1, с, 560 2, р. 114 . В настоящее время во всех индустриальных странах отмечается значительный рост производства и потребления эфиров гликолей. [c.289]

    Требования разнообразной техники к специальным жидкостям настолько жестки, многообразны и специфичны, что для изготовления их приходится использовать многочисленные химические синтетические соединения гликоли, углеводороды, спирты, глицерин, кремнийорганические вещества, эфиры и др. В определенных комбинациях или в чистом виде названные вещества и составляют специальные жидкости, которые обладают соответствующими физико-химическими и эксплуатационными свойствами. В зависимости от назначения и свойств жидкости можно подразделить на следующие охлаждающие, антиобледенитель-кые, для гидравлических систем самолетов, для гидротормозных систем автомобилей, гидравлические, амортизаторные, приборные. [c.440]

    Химические свойства гликолей вполне отвечают свойствам одноатомных спиртов они дают алкоголяты, простые и сложные эфиры, обычные продукты окисления и т. д. При этом в реакцию может вступать как один, так и оба гидроксила. Но в реакциях гликолей имеются и некоторые особенности, обусловленные одновременным присутствием в молекуле двух гидроксильных групп. [c.75]

    Одним из возможных путей утилизации полигликолей является превращение их в сложные диэфиры нафтеновых кислот.. Определено, что оптимальными условиями образования сложных эфиров нафтеновых кислот и полигликолей являются температура 220—240 °С, продолжительность реакции 6 ч, мольное соотношение нафтеновые кислоты гликоли, равное 2,2 1. В этих условиях выход эфиров составляет >96% [384]. Изучение физико-химических свойств [384] показало, что полигликолевые диэфиры нафтеновых кислот (фракция 120—240 °С) могут найти применение в качестве компонентов синтетических смазочных материалов. Их свойства при соотношении 2,1 1 (числитель) и 2,2 1 (знаменатель) приведены ниже  [c.145]

    На основе исследования физико-химических свойств сложных эфиров кубовых кислот и полигликолей (кубового остатка производства гликолей) сделаны рекомендации по использованию их в качестве компонентов основы технологических смазок для пропитки и волочения металлов [446]. [c.157]


    Существует определенная связь между химическим строением и свойствами поверхностно-активных веществ — эмульгаторов. Так, соли карбоновых кислот (растворимые в воде) со щелочными металлами, аммиаком или аминами обычно способствуют образованию эмульсий типа масло в воде, а их кальциевые, магниевые или алюминиевые соли — эмульсий типа вода в масле. Сложные эфиры жирных кислот с полиспиртами (гликолями) также способствуют образованию эмульсий типа вода в масле. [c.336]

    Они также придают гибкость построению молекулярной структуры, благодаря изменению химического состава сложного эфира. Простые полиэфиры дают несколько лучшие низкотемпературные свойства и гидролитическую устойчивость. Выбор полиэфира соответствующего химического состава позволил получить ПУ, удовлетворяющие жестким требованиям долговечности. Такой результат был достигнут несколькими путями, например, путем удлинения углеродной цепи между сложными эфирными связями и/или путем использования двухатомных спиртов (гликолей), содержащих вторичные гидроксильные группы. В целом, ПУ на основе сложных полиэфиров дают покрытия, на ощупь более похожие на кожу, в то время как покрытия из ПУ на основе простых полиэфиров резиноподобные. [c.81]

    Результаты исследования [11] показали, что наиболее эффективными и дешевыми ингибиторами для предотвращения гидратообразования могут быть высокоминерализованные пластовые или сточные воды, например отходы химического производства эпоксидных смол Сумгаитского химкомбината, а также упаренная пос-ледрожжевая барда (УПБ). На стадии получения эпоксидных смол в конце процесса производят промывку целевого продукта при этом получается кубовый остаток, который представляет собой сточные воды, в состав которых входят глицерин, глицериновый эфир, эпихлоргидрин, хлористый натрий, едкий натр и вода. УПБ является отходом спиртового производства и представляет собой темно-коричневую жидкость с запахом. Результаты физико-химических исследований позволили в некоторых случаях рекомендовать их в качестве ингибиторов гидратообразования взамен метанола или гликолей [5, 41]. Отмечено также, что добавка метанола или гликолей к высокоминерализованным водам значительно снижает температуру замерзания и улучшает антигидратные свойства. Так, при добавлении к сточной воде или УПБ гликолей (а именно, ППГ, который является отходом производства пропиленгликоля Сумгаитского химкомбината и представляет собой светло-коричневую маслянистую жидкость и имеет химические свойства технических гликолей) получаются ингибиторы гидратообразования с низкой температурюй замерзания (до -70 С) и полностью обеспечивающие промысловую подготовку газа.  [c.12]

    Химическую активность эфиров гликолей целесообразно рассмотреть в зависимости от тех же факторов, которые определяют их физические свойства степени замещения исходного гликоля, строения и числа оксиалкиленовых групп, природы эфирной связи (простая или сложная), а также от свойств заместителей. [c.300]

    Позднее ВНИИгазом были проведены исследования по изучению физико-химических свойств смесей аминов (ДЭА, МДЭА, ДЭА + МДЭА) с диметиловыми эфирами полиэтилен-гликолей в различных соотношениях, на основании чего было рекомендовано использование нового отечественного абсорбента Экосорб , по свойствам идентичного дорогостоящему импортному Укарсолу . Экосорб разработан на основе компонентов, выпускаемых отечественной промышленностью (АО Синтез г. Дзержинск и ПО Азот г. Кемерово) и отличается значительно более низкой стоимостью. [c.59]

    Недавно было показано, что в семенах различных растений, в жирая млекопитающих, рыб и микроорганизмов наряду с триглицеридами в виде незначительных примесей содержатся нейтральные липиды нового типа — эфиры высших жирных кислот с различными гликолями, такими, как этиленгликоль, изомерные пропиленглико-ли, бутандиолы и т. д. (Л. Д. Бергельсон, 1964). По химическим свойствам и хроматографическому поведению диольные липиды близки к триглицеридам, чем и объясняется тот факт, что до недавнего времени они не были обнаружены.— Прим. ред. [c.586]

    В книге описаны физические п химические свойства, методы получения, области применения, условия транспортирования, хранения и методы анализа ряда наиболее важных производных окисей этилена и пропилена этиленгликоля, ДИ-, три- и тетраэтиленгликолей, пропилен-, дипропилен-и трипропиленгликолей, эфиров гликолей и полимеров окиси этилена и окиси пропилена. Рассмотрены также токсические свойства указанных продуктов, условия обращения с ними. [c.2]

    Вюрц рассматривал окись этилена как ангидрид гликоля или его внутренний эфир, отмечая, что она изомерна уксусному альдегиду и по некоторым свойствам сходна с ним. При дальнейшем изучении химических свойств окиси этилена Вюрц обратил внимание на то, что эти свойства сильно отличаются от свойств обычных эфиров. Особенно поразило Вюрца то, что окись этилена во многих реакциях ведет себя аналогично основаниям, способна нейтрализовать кислоты, осаждать металлы в виде их гидроокисей, т. е. ведет себя как настоящее органическое основание, как безазотистый алкалоид. Взгляд на окись этилена как на соединение с основными функциями продержался довольно долго . Однако Брэдиг и Усов в 1896 г., измеряя электропроводность водных растворов окиси этилена, установили, что окись этилена не является электролитом. В 1907 г. Ганч и Гилберт измеряли электропроводность водных растворов этиленхлоргидрина, образующегося при нейтрализации соляной кислоты окисью этилена. При этом они установили, что этиленхлоргидрин также не является электролитом и не может быть причислен к классу солей. [c.15]


    Существуют спирты, содержащие две,, три и более гидроксильных групп. Спирты с двумя гидроксилами - диолы, или двухатомные спирты, - обычно называются гликолями. Низшие гликоли - вязкие жидкости с высокими температурами кипения, что связано с увеличением числа водородных связей по сравнению с одноатомными спиртами. Химические свойства гликолей во многом аналогичны свойствам спиртов. Простейший представитель гликолей - этандиол, этиленгликоль СН2ОН—СН2ОН -вязкая бесцветная сладкая на вкус жидкость с =198 °С. С водой этиленгликоль смешивается во всех отношениях, образуя низкозамерзающие смеси, и его с успехом применяют для приготовления антифризов - жидкостей, не замерзающих при отрицательных температурах. Например, водный раствор, содержащий 60 % этиленгликоля, замерзает только при -49 °С. Сложные эфиры этиленгликоля с двухосновными органическими кислотами используются как материалы для получения синтетических волокон. [c.414]

    Третий тип систем с НКТР включает воду или глицерин в смеси с эфирами гликолей или органическими основаниями типа алкилпи-ридинов. Вероятно, повышение температуры вызывает разрыв некоторых связей, что способствует разделению жидкостей. Долголенко [729] предположил, что эти связи возникают благодаря образованию гидратов. Журавлев [746] исследовал иррациональности в вязкостях и плотностях некоторых двойных водных систем, содержащих триэтиламин. Он сделал следующее заключение Двойные расслаивающиеся системы с нижней критической температурой растворения — это всегда системы с химическим взаимодействием компонентов. Изотермы физических свойств системы триэтиламин — вода подтверждают это . [c.19]

    Химические свойства этиленгликоля таковы, каких следует ожидать вообще от двухатомного алкоголя. Так он образует как моно-, так и диэф1 ры (сложные), которые можно просто приготовить из дихлорэтана или этиленхлоргидрина. Известно также большое количество простых эфиров и смешанных производных некоторые из них будут более подробно описаны ниже. Простые эфгры с удобством готовятся конденсацией спиртов или фенолов с окисью этилена. Известны как моно-, так и диметаллические производные гликоля При дегидратации этиленгликоль отчасти образует окись этилена  [c.555]

    Применение полимеризационноспособных непредельных соединений и олигомеров — прогрессивное направление в технологии резины, обеспечивающее снижение энергетических затрат, упрощение и автоматизацию переработки и формования резиновых смесей, получение эластомеров с новым комплексом свойств. Специфический комплекс свойств резиновых смесей и резин, полученных при применении полимеризационноспособных олигомеров и мономеров, особенности физико-химических явлений и химических превращений, наблюдающихся при их использовании в качестве временных пластификаторов, сшивающих агентов и усиливающих наполнителей, позволяют выделить этот метод как самостоятельное направление в области синтеза эластомеров. Применение с этой целью низкомолекулярных акриловых и метакриловых соединений и солей непредельных карбоновых кислот, комплексных соединений винилпиридинов, дималеинимидов, дивинилбензола и др., а также структура и свойства получаемых таким образом резин рассматривались в монографии [50, с. 255] и в работах [51, 52]. В результате были сформулированы общие представления о закономерностях протекающих реакций и структуре вулкаиизатов с непредельными соединениями. Кратко эти вопросы рассмотрены также в гл. 4. В данном разделе основное внимание уделено получению резин с помощью полимеризационноспособных олигомеров класса олигоэфиракрилатов (ОЭА) —дешевых нетоксичных продуктов, выпускаемых в промышленном масштабе [53]. Их использование в ряде случаев является единственно приемлемым способом переработки жестких каучуков и резиновых смесей, изделия из которых обладают уникальным сочетанием высокой износостойкости, прочности и теплостойкости, характеризуются низким набуханием в маслах и бензине. Применение низкомолекулярных аналогов ОЭА—акриловых и метакриловых эфиров гликоля, этаноламина и т. д. — описано в ряде работ [52, 54—67]. [c.26]

    Химические свойства. Дигалоидангидриды алкил-(арил)-фосфорных и тионфосфорных кислот широко используются в синтезе, главным образом в реакциях нуклеофильного замещения. Наиболее интересны их реакции с дифункциональными реагентами. Так, с 1,2- и 1,3-гликолями и -аминоспиртами они дают циклические эфиры и эфироамиды [c.208]

    Как показывают результаты стендовых испиганий (см.табл.9-12), качество моторного масла в целом в значительной степени определяется химической природой синтетического материала. В настоящее время, исходя из физико-химических показателей (см.гл.I), эксплуатационных свойств и стоимости синтетических продуктов, в качестве основы для получения моторных масел рекомендуется использовать полиоле-фины и алкилбензолы. Не исключено также использование пол иалкилен-гликолей и сложных эфиров [4]. Причем последние широко применяются в виде добавок к полиолефинан. [c.29]

    Следует отметить, что требования, предъявляемые в настоящее время различными отраслями народного хозяйства к каучу-кам и резинам, настолько многообразны (по прочности, эластичности, химической стойкости, газонепроницаемости и др.), что им не может одновременно удовлетворять какой-либо один вид каучука. С другой стороны, набор классов органических соединений, пригодных в качестве мономеров для синтеза каучуков, в последние годы чрезвычайно расширился. Помимо уже перечисленных классов, он включает органические полисульфиды, сложные эфиры двухосновных карбоновых кислот и гликолей, диизоцианаты ароматических соединений с конденсированными ядрами, винилпиридины и др. Отсюда и огромное разнообразие выпускаемых в настоящее время каучуков и сочетаний их технических свойств. [c.430]

    Как смазочные материалы вообще и как жидкости для обработки металлов, в частности, полигли-коли обладают рядом ценных свойств. Они характеризуются более высокой, чем у минеральных масел, смазочной способностью, высокими температурами вспышки и самовоспламенения, химической инертностью по отношению к металлам и низкой испаряемостью. При сгорании гликоли не образуют углистых отложений. Низкомолекулярные полигликоли хорошо растворимы в воде. С увеличением молекулярного веса и повышением температуры растворимость по-лигликолей в воде уменьшается, а в маслах увеличивается. Обычно гликоли растворяются во всех органических кислотах, спиртах и эфирах. Сами они являются растворителями галоидуглеводородов, неполярных органических соединений и некоторых присадок и частично растворяют соли неорганических кислот. Это позволяет существенно расширить применение гликолей как смазочных материалов, поскольку их можно сочетать с компонентами различного назначения [291]. [c.200]

    При изучении химических превращений молочной кислоты выявилось, что она имеет не совсем определенную основность, одно из важнейших свойств кислот. Представление же об атомности относилось в то время только к спиртам. Уже были известны, кроме одноатомных алкоголей, двухатомный гликоль и трехатомный глицерин. Понятие об атомности на кислоты не распространялось. Большинство авторов считало молочную кислоту одноосновной, но Вюрц, в 50-е годы, получив молочную кислоту окислением пропилхенгликоля, пришел к выводу, что она двухосновная. Вюрц [38] приводил следующие доводы в пользу своего заключения 1) при нагревании молекула молочной кислоты выделяет молекулу воды и превращается в свой ангидрид 2) при действии пятихлористого фосфора в состав молекулы молочной кислоты входят два атома хлора 3) из молочной кислоты удается получить два ряда эфиров — моно- и диэтиловые эфиры 4) из двухатомного нропиленгликоля при окислении должна получаться двухосновная кислота, поскольку из одноатомных алкоголей образуются одноосновные кислоты. В противоположность Вюрцу, Кольбе [39] считал молочную кислоту одноосновной, причем он рассматривал ее как пропионовую кислоту, в которой один атом водорода замещен на гидроксил. Принятию этой правильной мысли ме- [c.174]

    Физические свойства полимеров и степень их полимеризации зависят от условий процесса. Так, при полимеризации метилметакрилата в растворе в присутствии перекиси бензоила в качестве инициатора на молекулярный вес полимера оказывает влияние концентрация мономера [2208]. Другим важным фактором, влияющим на степень полимеризации, является температура. От степени полимеризации зависит растворимость полимера. Полученные обычным способом полимеры имеют средний молекулярный вес от 100 ООО до 175 ООО. Они представляют собой светлые твердые массы, похожие по внешнему виду на стекло, однако отличающиеся от последнего своими замечательными механическими свойствами, главным образом прочностью и неспособностью к растрескиванию.. Эти массы очень легко поддаются обработке. По способности пропускать ультрафиолетовые лучи опи превосходят обычное стекло, однако уступают в этом отношении кварцевому стеклу. Полимеры растворяются в органических растворителях, например в ароматических и галогенозамещенных углеводородах, в эфирах, в уксусной кислоте и т. п., образуя вязкие растворы, однако они нерастворимы в воде, малорастворимы в глицерине или гликоле полиакрилаты, полученные фотонолимери-зацией, абсолютно нерастворимы даже в органических растворителях. Химически активные вещества относительно легко разрушают полиакрилаты и полиметакрилаты [2243], которые, например, гидролизуются кислотами и п елочами при повышенной температуре [2142, 2243]. При нагревании до 300° полиакрилаты разлагаются на димеры и тримеры, тогда как полиметакрилаты деполимеризуются до мономера (см. стр. 436). Исходя из способности полиметакрилатов легко деполимеризоваться, Штаудингер припистл-вает им линейную структуру [2105]. [c.460]

    При 90 /о относительной влажности и температуре 35° было испытано большое число химически чистых органических жидкостей, включая сложные эфиры, например, фосфорной, фталевой, винной, лимонной кислот, одноосновные спиртовые эфиры жирных кислот с нормальной цепью, гликоли, кетоны с длинной цепью и эфиры. Ни одно из этих веществ не оказалось достаточным для обеспечения защиты в должной мере а многие из них, повидимому, даже ускоряли коррозию. Смазки, содержащие алюминиевое, кальциевое, натриевое и свинцовое мыла, оказались также малопригодными. Ланолин или смесь его с вазелином действовали довольно хорошо, но, повидимому, слегка протравливали сталь, возможно вследствие присутствия кислотных составляющих или соединений серы. В качестве добавки довольно хорошие свойства обнаружил спермацетный воск. Также улучшала защиту добавка небольших количеств смолы или натурального каучука. При выдержке на свету смола образует резиноподобную пленку, которую довольно трудно удалять с поверхности металла. Поэтому соединения, содержащие смолу, не следует применять для точных механизмов, особенно, если требуются одновременно и антифрикционные свойства. [c.955]

    Химическая обработка кубового остатка производства гликолей позволяет намного расширить области использования полигликолей. Они являются сырьем для органического синтеза сложных эфиров — качественных пластификаторов и синтетических масел [375]. Вязкостно-температурные характеристики смазочных масел и пластификаторов на основе полигликолей выше аналогичных свойств соединений, широко используемых в практике [376]. Наиболее перспективными пластификаторами и смазочными маслами являются полигликолевые эфиры монокар-боновых кислот. Эти эфиры характеризуются низкой температурой текучести (-<—70 °С), хорошими вязкостно-температурными свойствами, стойкостью в отношении образования осадков при окислении и хорошей совместимостью со многими полимерными материалами [377, 378]. [c.144]


Смотреть страницы где упоминается термин Химические свойства эфиров гликолей: [c.71]    [c.574]    [c.17]    [c.573]    [c.41]    [c.8]    [c.528]    [c.19]    [c.110]    [c.858]   
Смотреть главы в:

Гликоли и другие производные окисей этилена и пропилена -> Химические свойства эфиров гликолей




ПОИСК





Смотрите так же термины и статьи:

Гликоли

Гликоляты

Эфир гликоля



© 2024 chem21.info Реклама на сайте