Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическая гидрогенизация

    Примером адиабатических систем являются реакционные камеры процессов термического крекинга деструктивной гидрогенизации, каталитического крекинга с движущимся катализатором, прямой гидратации этилена, дегидрирования бутиленов и др. [c.263]

    Сырье и продукция. Основным сырьем установок каталитического риформинга являются прямогонные бензиновые фракции, содержащие парафиновые, нафтеновые и ароматические углеводороды С —Сц. В сырье риформинга могут вовлекаться после глубокой очистки бензины вторичных процессов — термического крекинга и коксования, бензины — отгоны с установок гидроочистки керосинов и дизельных топлив, бензины гидрокрекинга и каталитического крекинга В качестве перспективного сырья рассматриваются бензины гидрогенизации углей и сланцев, а также бензины, получаемые из синтез-газа. При производстве высокооктановых компонентов бензина используются фракции, выкипающие в пределам 85—180 °С, при производстве ароматических углеводородов С —Сч — различные фракции, отбираемые в пределах от 65—70 до 140—150 °С. [c.123]


    Парафин низкотемпературной гидрогенизации. При каталитической гидрогенизации смолы швелевания бурых углей на стационарном сульфидном никель-вольфрамовом катализаторе (27% сульфида вольфрама + 3% сульфида никеля на активированной окиси алюминия) под давлением водорода 300 ат происходит деструктивная гидрогенизация кислородных и сернистых компонентов смолы. При этом битумы, смолы и другие высокомолекулярные сернистые и кислородные соединения превращаются в углеводороды. Эти реакции необходимо проводить при более мягких температурных условиях, в противном случае возможно, что в результате термического разложения асфальтены и смолы будут отлагаться на катализаторе еще до того, как произойдет их восстановительное разложение. Это создает опасность необратимого загрязнения катализатора и постепенного падения его активности. [c.50]

    Цель данной главы заключается в том, чтобы показать, что практически все реакции алифатических и алициклических углеводородов лучше всего могут быть объяснены либо механизмом с участием иона карбония, либо обычным ценным свободнорадикальным механизмом. Глава но содержит детального обсуждения массы фактов, подтверждающих действие этих механизмов, и различных альтернативных схем. Вместо этого дается единая общая основа для объяснения каталитических и термических реакций углеводородов путем установления некоторых наиболее общепризнанных принципов поведения ионов карбония и свободных радикалов. Ниже будет показано, что разнообразные внешне не связанные между собой реакции (в том числе и побочные реакции) углеводородов могут быть объяснены на основе правдоподобной, упрощенной (но не слишком) теории. От подробного разбора мелких деталей теории и некоторых, на первый взгляд противоречивых, наблюдений в такой краткой по необходимости главе пришлось отказаться. Особое внимание будет обращено" на реакции, идущие с образованием или разрывом углерод-углеродных связей, в то же время механизмы реакции гидрогенизации, окисления, галоидирования и нитрования совсем не будут рассматриваться. [c.213]

    Реакция полимеризации рассматривалась как суммарная термическая реакция, включающая реакцию дегидрогенизации, гидрогенизации [c.205]

    В современной нефтепереработке наибольшее значение имеют следующие методы деструктивной переработки нефтяного сырья 1) термический крекинг, основанный на действии высокой температуры и высокого давления 2) каталитический крекинг в присутствии катализаторов 3) деструктивная гидрогенизация в присутствии водорода. [c.9]


    Чисто термические процессы, как правило, характеризуются высокими энергиями активации, обусловленными большой прочностью связей С—С, С—Н и Н—Н, которые надлежит разорвать и перегруппировать (60—100 ккал/моль). Скорости этих реакций ничтожно малы при низких температурах, при которых возможно протекание экзотермических реакций (гидрогенизации, алкилирования, полимеризации). Вот почему возможность проводить те или иные определенные процессы превращения углеводородов тесно связана с созданием высокоактивных и селективных катализаторов, избирательно благоприятствующих одному (или нескольким) из большого числа возможных реакционных путей. [c.12]

    Следует отметить, что не все перечисленные процессы однозначны по своему конкретному производственному направлению. Многие процессы несут функцию, в основном, углубления переработки нефти, как-то атмосферная и вакуумная перегонка, деасфальтизации и коксование гудронов, термический крекинг мазутов, переработка газов на топливные компоненты или на синтетический каучук, гидрогенизация тяжелых остатков и т. п. [c.102]

    Приведены основные закономерности и различные технологические варианты переработки углей и сланцев путем термического растворения. При этом резко увеличивается выход дистиллятных продуктов (по сравнению с методом полукоксования) для подмосковного богхеда 55,0 против 20%, для украинского бурого угля 58,6 против 17,0% (оба варианта с последующей гидрогенизацией) [c.19]

    Показано, что процесс термического растворения может быть использован для переработки американских сланцев. Выход органической массы более 90% Показано, что при гидрогенизации черемховской полукоксовой смолы гидрогенизат обогащается низшими фенолами. Содержание низших фенолов в исходном сырье 12% выход низших фенолов при 480— [c.30]

    Аналогичным образом, деструктивная гидрогенизация молекул углеводородов может вначале пойти по пути крекинга до получения олефинов и даже углерода, который, в свою очередь, в процессе гидрогенизации по реакции 6 образует метан. Окислению углеводородов обычно предшествует термический крекинг (реакция 13). Важнейшим условием может оказаться окисление атома углерода (реакция 1). [c.90]

    Примерами экзотермических реакций являются гидрогенизация, алкилпрование, синтез полиэтилена и другие процессы полимеризации, гидратация непредельных углеводородов и другие. К эндотор мическим реакциям относятся каталитический и термический крекинг, пиролиз, каталитический риформинг, дегидрирование и др.  [c.262]

    Гидрогенизация углей в том виде, как она применяется в промышленной практике для получения жидких углеводородов, включает в себя одновременно термическую деструкцию и гидрирование. Между собственно гидрированием (при низкой температуре и без значительной термической деструкции) и только коксованием существуют промежуточные виды обработки. Именно поэтому предлагали коксование углей при сравнительно низкой температуре, но в печи при продувке водородом, который служит средством увеличения (по сравнению с обычным коксованием) выхода легких масел. [c.38]

    Установить обш,ие принципы организации и экою-мическую значимость следующих технологических п о-цессов а) получение синтетического бензина б) полукоксование (скоростной пиролиз) с последующей переработкой смолы, гидрогенизация угля, газификация угля и синтез углеводородов, газификация угля в) мокрэе и сухое тушение кокса г) сухое тушение кокса по традиционной схеме и комбинирование сухого тушения и термической подготовки шихты д) получение при улавливании аммиака из коксового газа суль( )ата аммонля или безводного аммиака. [c.247]

    Преимуществами использования метилового спирта являются его доступность, значительно меньшая стоимость и более низкий расход. Кроме того, скорость гидрогенизации метиловых эфиров несколько больше, чем бутиловых. Недостатки метилового спирта летучесть, высокая токсичность и необходимость применения коррозионностойких материалов, поскольку этернфикация проводится в присутствии серной кислоты. В настоящее время разрабатывается термическая этернфикация кислот метиловым спиртом в более жестких условиях (250—320 С и 1—30 МПа). [c.32]

    Еще до 1930 г. автор настоящих строк, тогда работавший совместно с Дж. Н. Дж. Перкиным, занимаясь сравнением термической гидрогенизации по Бергиусу с термическим крекингом, столкнулся с совершенной недостаточностью химических сведений об углеводородных смесях. Более или менее количественное представление о низкокипящих компонентах можно было составить только путем тщательного фракционирования получаемых бензинов на 1-градусные фракции. Уже в то время было очевидно, что подобного рода исследование более высоко кипящих фракций является задачей безнадежной. Не умаляя того большого значения, особенно для научных целей, которое имеют исследования по проблеме № 6 Американского нефтяного института,—исследования, которые проводятся в США в течение многих лет,—можно с уверенностью утверждать, что усилия разделить фракции минеральных масел на индивидуальные компоненты вряд ли вообще могут привести к успешным результатам. Поэтому, когда в 1930— 1932 гг. в сотрудничестве с Дж. К. Флугтером и X. А. Ван-Вестеном в Дельфтском университете по заданию Шелл-группы проводилось исследование по получению смазочных масел с высоким индексом вязкости путем гидрогенизации и экстракции дестиллатов и остатков высокого молекулярного веса, а также путем полимеризации газообразных и жидких олефинов, необходимость в соответствующей химической характеристике нефтей и нефтепродуктов ощущалась более чем когда-либо. Именно эта необходимость и положила начало так называемому кольцевому анализу , известному также под названием анализа Ватермана , который был опубликован в его первоначальном варианте в 1932 г., а усовершенствования к нему и добавления—в 1935 г. [c.14]


    Примерами каталитических процессов, применяемых в нефтепереработке и нефтехимических производствах, являются каталитиче ский крекинг и риформипг различных видов сырья, гидрогенизация, дегидрирование, полимеризация, гидратация, алкплирование и другие. К некаталитическим процессам относятся термический крекинг и пиролиз, протекающие под воздействием высоких температур. [c.262]

    При термическом разложении метана можно получить такие ценные продукты, как водород, необходимый для ряда органических производств (гидрирование жиров, деструктивная гидрогенизация углеводородов, гидрпроваппе угля — см. ниже, главу XI) и сажу, широко применяемую в каучуковой нромышленностн в качестве наполнителя, а также для многих других целей. [c.245]

    Дистилляты, получаемые при термическом крекинге сланцевого масла, окрашены в темный цвет из-за большого содержания смол, содержащих около 7—9% азота. Смолы образуются в результате окисления соединений типа пиролла и пиридина 10]. Применение хшслотной обработки для улучшения стабильности дает топлива удовлетворительных качеств, но она сопровождается большими потерями [15]. Вероятно, потребуется применение некоторых видов гидрогенизации для удаления непредельных соединений из сланцевого масла и превращения неуглеводородных компонентов, если при этом удастся избежать излишних потерь, жидкого продукта. [c.281]

    В результате этого процесса из сланцевого масла удаляется около /з серы и кислорода и около азота. Хорошо насыщенное среднее масло (177—330°), смешанное с не подвергшимися обработке легкими фракциями сланцевого масла, можно затем очистить над неподвижным слоем катализатора (сернистый вольфрам) с целью дальнейшего освобождения от азотистых загрязнений, с последующей деструктивной гидрогенизацией до бензина в паровой фазе над таким катализатором, как 10%-ный сернистый вольфрам на фуллеровой земле. Продукт парофазной гидрогенизации характеризуется высокой степенью очистки, низким содержанием серы и высокой приемистостью к ТЭС этилированные бензины имеют октановое число 94 и даже,выше. Гидрированное среднее масло является идеальным сырьем для термического крекинга, но не годится для каталитического крекинга из-за сравнительно высокого содержания остаточного азота [16]. При каталитическом крекинге самого сланцевого масла найдено, что выход бензина и жизнь катализатора, очевидно, зависят от содержания азота в сырье [22]. [c.282]

    Реактивные топлива Т-2, ТС-1, Т-1, содержащие прямогонные компоненты, не подвергнутые гидрогенизации, умеренно термостабильны и имеют, как правило, достаточно длительные допустимые сроки хранения-5 лет и более. Высокотермостабильные же топлива РТ, Т-8 и Т-6 представляют собой углеводородные фракции, весьма глубоко очищенные от гетероатомных соединений. Но в результате удаления из них при производстве естественных антиокислителей они обладают повьпценной окис-ляемостью, что приводит к усилению агрессивного воздействия на резину, а также к накоплению в них продуктов окисления и быстрому ухудшению термической стабильности. Поэтому допустимый срок хранения указанных топлив без антиокислительных присадок в ряде случаев значительно меньше, чем сроки хранения топлив Т-1, ТС-1 и Т-1. [c.168]

    Обработаны данные опытов термического растворения (см. ) и гидрогенизации углей. Показано, что превращение нерастворимой в бензоле части угля или выход экстракта являются функцией полярной части параметра растворимости X (см. ), дающей максимум при К = 9,5. Параметр Я, для бензола 9,2, для фенола 9,9, для тетралина 9,4. [c.25]

    Показано, что органическая масса сланца гидрируется легче, чем сланцевая смола, подвергавшаяся термическому воздействию. Принципиальная схема включает жидкофазную гидрогенизацию с высокой объемной скоростью (I), термоконтактную перегонку шлама и гидростабилизацию широкой фракции (II). Чисто топливный вариант дает 20,9% бензина, 41,1% дизельного топлива, 23,9% газа, 5,9% полукокса топливно-химический — 16,6% бензина, 37,3% дизельного топлива, 5,8% фенолов, 5,7% нейтральных кислородсодержащих соединений, 22,1% газа, 5,9% полукокса. Разработанная схема характеризуется большей производительностью айпаратуры (в 5—6 раз), чем обычная схема гидрогенизации угля и сланцев под давлением 300—700 кгс/см  [c.33]

    Изучена зависимость показателей процесса деструктивной гидрогенизации в гкидкой фазе (условия 1) от качества сырья чем больше оно ароматизировано, тем ниже объемная скорость и производительность и тем больше расход водорода на бесполезное образо-вашю газа до 95% в случае крекинг-остатков). Более целесообразно сочетание гидрогенизации на стационарных катализаторах с другими процессами нефтепереработки удалением асфальтенов термическими методами и гидрированием деасфальтизатов (условия II). Показано, что выходы жидких продуктов в таких вариантах составляют до 85—88% (от нефти), расход водорода на газообразование 24—37%. Производительность аппаратуры высокого давления увеличивается в несколько раз [c.58]

    Проведены опыты термического крекинга в присутствии тетралина. Выход кокса понижается с 17 до 2%. Другие разбавители (декалин, гептан, бензол, нафталин) дают худшие результаты. Предполагают, что таким путем можно будет комбинировать крекинг и гидрогенизацию, проводя ИХ при давлениях менее 34 кгс/см. Преимуществом метода является гидрирование дистиллятов (в том числе нафталина, образовавшегося из тетралина), а не суммарного остатка, требующего применения высокого давления [c.59]

    Гидро генизационное облагораживание дистиллятов контактного коксования уменьшает содержание в них конденсированных ароматических углеводородов и асфальтенов с 39—45% до 22—33%и облегчает последующий каталитический крекинг. Выход бензина увеличивается, снижая на треть отложения кокса. Комбинирование коксования, гидрогенизации и каталитического крекинга дает выход светлых нефтепродуктов 80,5% Показано, что при облагораживании сернистых газойлей термического и каталитического крекинга лз чшие результаты достигаются при смешении сырья с дизельным топливом (1 1) [c.64]

    Гидрогенизация в зоне термической деструкции. Когда увеличивают температуру выше 350° С, механизм реакций постепенно изменяется на первичное воздействие накладываются другие, более быстрые и энергично действующие условия, характерные для процесса термической деструкции. Имеется в виду обычно разрыв связи углерод—углерод с образованием свободных радикалов, удалением освобождаемых при этом групп атомов, наиболее богатых водородом в форме летучих веществ, и реконденсация в более стабильные формы радикалов, менее летучих и более богатых ароматическим углеродом. Водород под давлением, вероятно, вмешивается в этот механизм, насыщая свободные валентности одной части образованных радикалов и препятствуя тем самым их конденсации. Вероятно также, что он препятствует термической дегидрогенизации ненасыщенных циклов, что приводит к расширению ароматических групп и к образованию кокса (см. рис. 19). [c.39]

    Гипотеза о пр6ме1куточном образовании карбониевых ионов плодотворно примененная для объяснения механизма многих реакций в органическойк химии успешно использована и для объяснения механизма ионных реакций, протекающих в процессах переработки нефти. Основные обобщения сделаны применительно к каталитическому крекингу но могут быть, с определенной ревизией, использованы и для процессов гидрогенизации. Эти обобщения, получившие название карбониево-ионной теории, в первую очередь должны были объяснить различия протекания каталитического и термического крекинга. [c.119]

    Важно отметить, что из двух возможных путей расщепления метилциклопентана — деметилирования с образованием циклопентана и раскрытия кольца с образованием гексанов — при низких температурах преобладает второй, а при высоких (500 °С) — первый Деметилирование более характерно для термического процесса или для процессов, протекающих в присутствии катализаторов, но при высоких температурах и малых давлениях Раскрытие кольца более характерно для мягких условий. Закономерность направленности раскрытия циклонентанового кольца сохраняется полностью. В самом деле, во всех гидрогенизатах во фракции гексанов преобладает 2-метилпентан. Если принять его количество за единицу, то количества 3-метилпентана варьируют от 0,26 до 0,70, а количества н-гексана — от 0,30 до 0,61. Аналогичное преобладание 2-метилпентана в продуктах расщепления бензола и циклогексана отмечено и для других высокотемпературных катализаторов 2 . Так, например, при гидрогенизации бензола в присутствии катализатора Сг - - 2п -(-8 - - Г на алюмосиликате было выделено 4,1% циклогексана, 31,2% метилциклопентана, 7,9% [c.228]

    Указанные олеофильные примеси нефти являются потенциальными источниками коррозии оборудования при переработке нефти и ухудшают качество получаемых нефтепродуктов. Они могут быть удалены частично или полностью только при термическом и каталитическом распаде соединений в процессах гидрогенизации, а также при специдоьной обработке нефтепродуктов химическими реагентами. При гидрогенизации нефти и нефтепродуктов большинство сернистых соединений гидрируется с выделением Нг 8, азотистых - аммиака, а кислородных - воды. Получаемый сероводород улавливается и используется для получения серной кислоты и серы. Следует также отметить, что " ррозионное действие нефтей в значительной степени зависит от количества кислорода, растворенного в них. [c.12]

    Ранее указывалось, что уменьшение активности катализатора и тенденция к сажеобразованию понижаются в присутствии водорода в реакционной смеси. Отмечалось также, что температура на входе в установку риформирования может быть понижена, если водород подавать одновременно с паром и десуль-фурируемым сырьем. Из этого следует, что сочетание гидрогазификации и паровой конверсии в будущем могло бы стать основой прямой низкотемпературной конверсии лигроина. Прямая гидрогенизация термически неустойчивых углеводородов, т. е. взаимодействие перерабатываемого сырья и водорода, минуя промежуточные стадии разложения, вероятно, является одним из надежных методов борьбы с отложением углерода. [c.118]

    Промышленная гидрогенизация угля. В зоне, представляющей технологический интерес (400—500° С), происходит противоборство между реакциями термической деструкции, которые стремятся к образованию полукокса, и реакциями гидрирования, которые, напротив, дают жидкие или растворимые продукты. Последние ускоряют течение реакций, так как а) способствуют контакту между водородом и углем, диспергируясь в растворенном масле б) увеличивают давление водорода и при введении катализаторов, которые влияют, вероятно, особенно под действием средних фракций, служат затем для переноса водорода к сольволизированному углю. [c.39]


Смотреть страницы где упоминается термин Термическая гидрогенизация: [c.166]    [c.167]    [c.169]    [c.179]    [c.181]    [c.397]    [c.282]    [c.111]    [c.117]    [c.117]    [c.283]    [c.16]    [c.27]    [c.126]    [c.96]    [c.7]   
Смотреть главы в:

Химическая переработка топлива -> Термическая гидрогенизация




ПОИСК







© 2025 chem21.info Реклама на сайте