Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие в процессах кристаллизации

    Кристаллизация сульфата аммония из маточного раствора является таким же важным элементом сатураторного процесса, как и тепловое равновесие Процесс кристаллизации состоит из двух стадий — образование центров кристаллизации (зародышей) и дальнейшего роста кристаллов Количество образующихся центров кристаллизации зависит от различных причин температуры маточного раствора, его кислотности и чистоты, интенсивности перемешивания у граней кристаллов [c.231]


    В зависимости от строения и состава макромолекул возможны различные глубины кристаллизации. Кроме того, не всегда легко достичь полного термодинамического равновесия процесса кристаллизации. Поэтому наряду со свойствами кристаллических областей полимера, как правило, определяюши. общий комплекс свойств кристаллических полимеров, можно заметить и свойства неупорядоченных областей (так, например, в пределах кристаллического состояния в той или иной степени можно заметить явления стеклования, характерные [c.110]

    Выход обогащенного у-изомером продукта и содержание в нем у-изомера при экстракции зависит от выбранного метода, характера растворителя, условий экстракции и кристаллизации. Зная состав экстрагируемого гексахлорана и растворимость компонентов при выбранной температуре экстракций во втором растворителе, можно с достаточной точностью рассчитать состав получаемого раствора, осажденного обогащенного продукта (при условии равновесия процесса кристаллизации) и маточного рас-твора  [c.153]

    В монографии рассмотрены вопросы фазового равновесия при переходе веществ из жидкого состояния в кристаллическое, кинетические закономерности образования и роста кристаллов. Обсуждены особенности теплообмена при охлаждении различных расплавов. Приведена классификация методов кристаллизации расплавов. Проанализированы особенности различных технологических методов кристаллизации расплавов, в том числе методов отверждения расплавов, фракционной кристаллизации, очистки веществ от примесей и выращивания монокристаллов. Рассмотрены вопросы аппаратурного оформления разных процессов кристаллизации расплавов. [c.728]

    К ионам на поверхностном слое кристалла притягиваются противоположно заряженными концами полярные молекулы растворителя (рис. 55). При сближении молекул с ионами потенциальная энергия уменьшается и ионы переходят в раствор. По мере накопления ионов в растворе усиливается обратный процесс — кристаллизация. При выравнивании их скоростей наступает равновесие раствор становится насыщенным. [c.172]

    Одним из основных вопросов, решаемых при расчете кристаллизаторов, является описание кинетики кристаллизации, состоящей из стадий создания пересыщения, -образований зародышей и роста кристаллов. Она также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновения между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физикохимические свойства раствора, конструкция аппарата и т. д. Детальное описание явлений и факторов, сопровождающих процессы массовой кристаллизации из растворов и газовых смесей, дано в монографии [17]. Важное значение имеет также описание условий равновесия между сосуществующими фазами (твердое вещество—жидкость, твердое вещество—газ (пар)). На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процессов кристаллизации, а также перекристаллизации. [c.90]


    Таким образом, математическое описание процесса кристаллизации в качестве необходимых элементов должно включать описание явлений кинетики кристаллизации, гидродинамики фаз, фазового равновесия. [c.26]

    Таким образом, в живых организмах структурообразование сопровождается разрывом и образованием новых химических связей, тогда как в процессе кристаллизации межатомные связи не затрагиваются. Кристаллы в условиях отвердевания приходят в термодинамическое равновесие с окружающей средой, когда вещество находится при данной температуре на самом низком энергетическом уровне. Продукты же структурообразования, идущего в организмах, например целлюлоза, белок и другие, далеки от термодинамического равновесия с окружающей средой. Они обладают повышенным запасом энергии, накопленной в виде энергии связи в их неплотных структурах. Жесткая направленность ковалентной связи не позволяет атомам и атомным группам, находящимся в момент структурообразования на высоком энергетическом уровне, переходить на самый низкий энергетический уровень, отвечающий [c.7]

    Растворы труднорастворимых соединений характеризуются динамическим равновесием двух противоположных процессов переход вещества из твердого состояния в раствор и кристаллизация его из раствора. Для х арактеристики растворимости труднорастворимых соединений используется величина, называемая произведением растворимости, которая отличается от константы равновесия процесса растворения лишь учетом того, что активность твердого вещества при постоянной температуре постоянна. [c.208]

    Для процесса кристаллизации из раствора, в котором достигается термодинамическое равновесие между твердой (кристаллы) и жидкой (маточный раствор) фазами, будет справедлив, как и для других фазовых процессов разделения, закон распределения Бертло — Нернста. В соответствии с этим законом применительно к системе основное вещество — примесь можно записать, что [c.152]

    Для определения коэффициента разделения применительно к процессу кристаллизации из раствора предложен ряд методик, в основном отличающихся характером установления равновесия между выделяющимися кристаллами и маточным раствором. Коэффициент разделения при этом находится на основании данных анализа содержания основного вещества и примеси в исходном и маточном растворах с помощью соотношения (111.92). При выражении концентраций через молярные доли для этой цели более удобным является выражение (III.92а) или (111.926). Коэффициент разделения может быть также определен и методом направленной кристаллизации раствора. [c.153]

    Рассмотрим процесс охлаждения расплава, заданного на диаграмме фигуративной точкой М (состав 45 % А н 55 % В). При медленном о.хлаждении расплава кристаллизация начинается при температуре, отвечающей фигуративной точке 3 на линии ликвидуса кристаллизуется твердый раствор, состав которого определяется точкой 4 на линии солидуса (твердый раствор по сравнению с жидким обогащен высокоплавким компонентом А, 93 %). Оставшийся расплав обогащается низкоплавким компонентом В, что соответствует перемещению точки 3 по линии ликвидуса вправо в положение 3. Выделяющаяся новая порция твердого раствора (точка 4 ) по сравнению с жидкой снова обогащается компонентом А, но по сравнению с предыдущей порцией твердого раствора она менее богата компонентом А (сравните составы твердых растворов в точках 4 и 4 ). Таким образом, состав твердого раствора в процессе кристаллизации меняется по линии солидуса тоже вправо (показано стрелками на диаграмме). Если диффузия в кристаллах настолько значительна, что при каждой температуре вся кристаллическая фаза приходит в равновесие с расплавом нового состава, то в какой-то момент состав твердого раствора сравняется с составом исходного расплава (при температуре ( — точка 4") и кристаллизация закончится. При дальнейшем понижении температуры будет происходить охлаждение твердого раствора, что будет соответствовать перемещению фигуративной точки в положение А/. [c.90]

    Метод газовой электронографии может применяться для изучения молекул при сверхзвуковом истечении струи пара исследуемого вещества, что открывает возможности исследования процессов кристаллизации соединений из газовой фазы и потенциалов межмолекулярного взаимодействия. Данный метод можно использовать для изучения химических равновесий в газовой фазе, а также структур свободных радикалов и ионов, если их получить в рассеивающем объеме в достаточном количестве. Имеется также возможность применить метод газовой электронографии для определения потенциалов и барьеров внутреннего вращения молекул. Важным, но в то же время ограниченным является использование данного метода в определении энергии химических связей, так как вклад в рассеяние потенциала валентных электронов очень мал. [c.156]


    Однако процесс растворения не является односторонним. Молекулы растворяемого вещества не только переходят с поверхности кристалла в раствор, но и выделяются из раствора на поверхность этого же кристалла. Таким образом, одновременно идут два процесса растворение и кристаллизация. Вначале преобладает процесс растворения. Процесс кристаллизации идет тем быстрее, чем больше концентрация раствора. Это происходит до тех пор, пока не наступит равповесие, т. е. пока не выравняются скорости обоих процессов. После установления равновесия содержание растворяемого вещества в растворе остается неизменным, если не изменяются условия, при которых находится раствор, например температура. Такое состояние раствора называется состоянием насыщения, а раствор — насыщенным. Состояние насыщения раствора соответствует максимальной растворимости вещества. [c.125]

    Подавляющее большинство веществ обладает ограниченной растворимостью в воде и других растворителях. Поэтому на практике часто приходится встречаться с системами, в которых в состоянии равновесия находятся осадок и насыщенный раствор электролита. Вследствие динамического характера равновесия скорость процесса растворения осадка будет совпадать со скоростью обратного процесса кристаллизации. Так, для насыщенного раствора электролита А В , находящегося в равновесии с его твердой фазой, будет характерен следующий обратимый процесс  [c.163]

    Если на протяжении всего процесса кристаллизации в равновесии с жидкой фазой находится только одна твердая фаза — твердый раствор, то затвердевание заканчивается при температу- [c.134]

    Знание условий равновесия между фазами важно для решения многих задач. К их числу относятся, например, расчеты процессов кристаллизации солей из водных растворов пли процессов образования минералов при застывании магмы. [c.87]

    Если концентрация соли в ненасыщенном растворе равна концентрации ее в твердом кристаллогидрате, то при охлаждении такого раствора до температуры насыщения (точка G) из него будет кристаллизоваться кристаллогидрат, причем концентрация раствора не будет изменяться до полного его исчезновения и затвердевания всей системы. В продолжение всего процесса кристаллизации точки системы, жидкой и твердой фаз в этом случае совпадают с точкой G и остаются неподвижными. Точка G максимума на кривой растворимости, соответствующая значению температуры и состава, при которых жидкая фаза находится в равновесии с кристаллами [c.140]

    Термодинамические условия зарождения фазовой границы. Процессы кристаллизации представляют собой фазовые переходы, сопровождающиеся увеличением степени упорядоченности. Эти процессы подразделяются на 2 типа газ—кристалл, жидкость (стекло)— кристалл. В термодинамическом отношении данные фазовые равновесия описываются однотипно. В предкристаллизационный период в жидкости образуются ассоциаты в пределах ближнего порядка, которые, однако, не могут стать зародышем новой фазы из-за термодинамической нестабильности. Эта нестабильность —следствие их большой поверхностной энергии. Возникающие таким образом гомогенные флуктуации не способны к самостоятельному существованию в расплаве, и время их релаксации зависит от многих факторов вязкости, теплопроводности, теплоемкости и т. п. По мере снижения темпера- [c.56]

    Скорость роста кристалла будет определяться следующими факторами 1) скоростью образования зародышей кристаллизации и 2) скоростью отвода тепла от фронта кристаллизации так, чтобы температура в нем не превышала температуры плавления растущего центра кристаллизации. Практически в любом расплаве присутствуют примеси, которые влияют на скорость роста и чистоту кристалла. Реальные процессы кристаллизации всегда связаны с относительно большими скоростями роста так, что равновесие между расплавом и растущим кристаллом не успевает устанавливаться, т. е. оттесняемая от фронта кристаллизации в расплав примесь (при < 1) не успевает равномерно распределяться по всему объему жидкости, и концентрация примеси у границы раздела возрастает (рис. 47). Таким образом, кристалл растет из слоя расплава, обогащенного примесью, причем это обогаще- [c.84]

    Процесс кристаллизации жидкости начинается с возникновения зародышей твердой фазы. При этом не любой возникший зародыш способен к самостоятельному существованию и дальнейшему росту. Образование межфазной границы связано с затратой дополнительной энергии. Поэтому зародыш станет стабильным, когда он достигнет определенного размера, при котором величина его объемной свободной энергии превысит запас поверхностной энергии. При некотором критическом размере зародыша его объемная и поверхностная свободные энергии равны друг другу и в этом состоянии система будет находиться в неустойчивом равновесии. Для осуществления процесса кристаллизации с заметной скоростью необходимо обязательно переохладить расплав, чтобы скомпенсировать затрату энергии на возникновение фазовой границы. При охлаждении расплава только до равновесной температуры кристаллизации образование кристаллов будет происходить с бесконечно малой скоростью. [c.187]

    В ходе процесса кристаллизации температура системы понижается и равновесие между расплавом и кристаллами, образовавшимися ранее, т, е. при более высокой температуре, нарушается. Поэгому кристаллизация сопровождается диффузией, в результате чего при медленном проведении процесса зерна всего сплава получаются однородными и имеют одинаковый состав. При быстром охлаждении процессы диффузии не успевают происходить и сплза получается неоднородным. [c.549]

    Неизотермическая модель идеального вытеснения по раствору [5, 81—85]. Математическая модель процесса кристаллизации в псевдоожиженном слое выводится на основании следующих допущений 1) средний размер кристаллов в слое, средняя порозность слоя и средняя скорость в кри-сталлорастителе являются величинами постоянными 2) в рабочем диапазоне температур равновесная концентрация раствора линейно зависит от температуры, удельные теплоемкости раствора С,т и кристаллов Сат являются постоянными 3) псевдоожиженный слой по циркулирующему раствору представляет систему идеального вытеснения 4) температуры раствора и кристаллов в слое равны между собой на любой высоте слоя в любой момент времени, т. е. раствор и кристаллы находятся в термодинамическом равновесии. [c.231]

    Предварительный анализ свойств компонентов и смеси уже позволяет вьщелить группы альтернативных способов получения чистых компонентов, однако полезно также выполнить анализ фазового и химического равновесия, что позволяет сузить область экспериментальных и расчетных исследований. Например, если смесь гомогенна, не образует азеотропов, характеризуется большой разностью температур кипения, но содержит компонент (или компоненты) с повышенной коррозионной способностью, то ее разделение может быть обеспечено обычной ректификацией (возможно, с применением аппаратов однократного испарения). Расчет этих процессов не представляет труда, однако очевидно, что особое внимание должно быть уделено подбору материала оборудования. С другой стороны, при наличии азеотропов число возможных способов разделения возрастает (азеотропно-экстрактивная ректификация, ректификация вакуумная или под давлением, мембранные процессы, кристаллизация и т. д.). [c.40]

    В насыщенном растворе твердого вещества имеет место равновесие между процессом растворения и процессом кристаллизации. Труднорастворимый электролит находится в растворе в очень малой концентрации, вследствие чего он почти полностью диссоциирован на ионы. Поэтому равновесие в насыщенном растворе труднорастворимого электролита может быть выражено как равновесие между вещёством в осадке и ионами его в растворе  [c.59]

    При охлаждении эвтектики происходит изотермическая кристаллизация всей системы при Кривая охлаждения эвтектики 5 имеет одну горизонтальную площадку, соответствующую 4-На рассматриваемой фазовой диаграмме процесс кристаллизации эвтектики изображается точкой Е. Число степеней свободы кристаллизующейся эвтектики равно С = 2+1 — 3 = 0. Это значит, что трехфазное равновесие в конденсированной двухкомпонентной системе возможно только при одном единственном значении состава и температуры, т. е. в точке. [c.197]

    Практически процесс кристаллизации можно рассматривать более упрощенно, считая, что при температуре вначале кристаллизуется жидкость О и лишь после ее исчезновения — жидкость С. Описанная ликвация называется стабильной (отвечает условиям термодинамического равновесия) и проявляется только в надлик-видусной области. [c.62]

    Диаграммы плавкости неизоморфных смесей с простой эвтектикой, при кристаллизации которых выделяются чистые твердые компоненты, строятся на основании кривых охлаждения. Если нагреть жидкий цинк или кадмий до высокой температуры и охладить его, то температура будет равномерно понижаться согласно закону охлаждения Ньютона такой процесс будет происходить до тех пор, пока жидкость не начнет кристаллизоваться. При кристаллизации будет выделяться теплота кристаллизации, и поэтому охлаждение на некоторое время прекратится. С начала кристаллизации температура устанавливается постоянной до тех пор, пока вся жидкость пе затвердеет, после чего охлаждение будет продолжаться по тому же закону Ньютона. Кривые охлаждения (/ и //) представлены на рис. 103, причем температура, соответствующая горизонтальному участку, будет температурой кристаллизации данного вещества. Линия температурной остановки будет горизонтальной, так как состав жидкой фазы, из которой выпадают кристаллы, не меняется, и поэтому выпадение первых порций кристаллов идет при тех же условиях, что и последних. Постоянство температуры в данном случае вытекает также и из правила фаз, поскольку здесь имеется один компонент и две фазы в равновесии — жидкая и твердая при Р = onst. Число степеней свободы будет / = 1 — 2 - - 1 = 0. Таким образом, температура в процессе кристаллизации изменяться не будет. [c.228]

    В основе кристаллизационных методов разделения смесей лежит различие в составах жидкостей (расплав или раствор) и образующейся из нее твердой фазы (кристаллы). Это различие максимально, когда жидкая и твердая фазы находятся в термодинамическом равновесии. Часто оно оказывается существенно выше, чем различие в составах той же жидкости (расплав) и равновесного с ней пара. В таких случаях кристаллизационные методы очистки являются в принципе более предпочтительными, чем дистилляционные. К достоинства.м кристаллизационных методов следует отнести более низкую температуру процесса кристаллизации по сравнению с температурой процесса дистилляции. Это особенно важно при очистке термонестойких веществ и для снижения загрязняющего действия материала аппаратуры. Преимуществом кристаллизационных методов очистки является также то, что они требуют меньших затрат энергии, чем дистилляционные методы, так как теплота плавления вещества существенно ниже теплоты его испарения. [c.104]

    Рассмотрим двухкомпонентные системы, когда на кривой охлаждения имеется одна горизонтальная остановка. Из правила фаз следует, что если при постоянном давлении в системе из двух компонентов в равновесии находятся три фазы, то система не имеет ни одной степени свободы. Таким образом, горизонтальный участок на кривой охлаждения двухкомпонентной системы указывает на то, что при температурной остановке в равновесии находятся три фазы (две твердые и одна жидкая). Если кристаллизующаяся твердая фаза (твердый раствор, чистый компонент или определенное соединение) отличается по составу от существующей с ней жидкости, то при охлаждении жидкой фазы от начальной температуры в точке а до температуры начала кристаллизаци в точке Ь (кривая 3) кривая охлаждения плавно идет вниз. В момент появления твердой фазы, вследствие выделения теплоты кристаллизации, скорость охлаждения уменьшается. Поэтому на кривой охлаждения в точке Ь появляется излом, отвечающий температуре начала кристаллизации. При этом число степеней свободы уменьшается на единицу, система из дивариантной становится моновариантной. Если на протяжении всего процесса кристаллизации в равновесии с жидкой фазой находится только одна твердая фаза, то затвердевание заканчивается при температуре в точке с. Наблюдаемый при этой температуре второй излом на кривой охлаждения отвечает полному исчезновению жидкой фазы и, следовательно, приобретению одной степени свободы, система из моновариантной становится дивариантной. Однако если в конце кристаллизации появляется еще одна твердая фаза, кроме той, которая выделилась первично, то система теряет еще одну степень свободы и затвердевание заканчивается инвариантным равновесием, которому отвечает горизонтальный участок се (кривая 4). По окончании затвердевания система, состоящая из двух твердых фаз, имеет одну степень свободы, охлаждение ее идет по плавной кривой и заканчивается при температуре в точке й. [c.226]

    Процесс кристаллизации эвтектической смеси отмечается горизонтальной площадкой на кривой охлаждения как нонвари-антное равновесие. Кристаллизация образцов, за исключением образцов эвтектического состава, протекает в интервале температур от 1 до 5- При этом состав жидкой фазы изменяется по кривой ликвидуса от Та до точки Е, состав твердой фазы отвечает ординате чистого компонента А. Количество твердой и жидкой фаз можно определить также по правилу отрезков. [c.272]

    Первый член уравнения (IX.1) представляет собой полную поверхностную свободную энергию и пропорционален поверхности зародыша (4пг ). Второй член — объемная свободная энергия новой фазы — пропорционален объему зародыша. Очевидно, с ростом размера зародыша объемная свободная энергия изменяется быстрее, чем поверхностная (первая — пропорционально кубу радиуса, вторая — квадрату). При некотором критическом размере зародыша его объемная и поверхностная свободные энергии равны друг другу и в этом состоянии система будет находиться в неустойчивом равновесии. При малейшем увеличении размера зародыша сверх критического самопроизвольно протекает процесс кристаллизации, поскольку обшее изменение свободной энергии становится отрицательным (так как злГкр AGv >4лГкр AGs], то AG<0). При г<гкр зародыш неустойчив и самопроизвольно растворяется в жидкости (AG>0). Для осуш,ествления процесса кристаллизации с заметной скоростью необходимо обязательно переохладить расплав, чтобы скомпенсировать затрату энергии на возникновение фазовой границы раздела. При охлаждении расплава только до равновесной температуры кристаллизации образование кристаллов будет происходить с бесконечно малой скоростью. [c.305]

    При некоторой температуре (определенной для каждого фиксированного давления) начинается процесс кристаллизации, сопровождающийся резким изменением показаний весов (Ьс на рис. 23). Поскольку расплав сиетемы Си—Р склонен к переохлаждению, то температура начала кристаллизации не соответствует равноресной температуре на линии ликвидуса (точка Ь на рис. 23). Для установления истинной температуры трехфазного равновесия горячую зону плавно нагревают до начала плавления с , которое отмечается по резкому изменению показаний весов в обратную сторону ( а на рис. 23). Зарегистрированная при этом температура отвечает трехфазному равновесию кристаллы — расплав — пар при заданном да,членин. Состав расплава, соответствующий точке а на рис. 23, рассчитывают после установления постоянства показаний весов, [c.46]

    Иногда его называют коэффициентом сегрегации или коэффициентом ликвации. Коэффициент распределения — очень важная характеристика примеси. Он определяет поведение примеси при кристаллизации и характер распределения ее в вырап енном кристалле, а также позволяет оценить эффективность очистки вещества в процессе кристаллизации. Величина к зависит от природы примеси и основного вещества, типа фазовой диаграммы соответствующей системы, условий кристаллизации, скорости перемещения расплавленной зоны, интенсивности перемешивания и т. п. При кристаллизации из расплава различают равновесный и эффективный коэффициенты распределения. Равновесный коэффициент распределения к применим к бесконечно медленной кристаллизации при равновесии между соприкасающимися фазами. Эффективный коэффициент распределения характеризует процессы кристаллизации с измеримой скоростью (состояние системы неравновесно). Величина /г для различных примесей в одном и том же веществе может меняться в очень широких пределах. Примеси, понижающие температуру плавления, имеют к <. 1, а примеси, повышающие температуру,— к > 1, На рис. 32 показаны участки фазовых диаграмм в области небольших концентраций примеси. При этих концентрациях можно использовать для описания состояния системы законы разбавленных растворов и считать, что шнии солидуса и ликвидуса близки к прямым. Тогда коэффициент распределения легко рассчитать. Он равен отношению отрезков горизонтальных линий от оси температур до их пересечения с линиями солидуса и ликвидуса. Если угол между линиями солидуса и ликвидуса мал и концентрации и [c.61]

    Гидролиз тетрахлорида. Очищенный Ge U гидролизуют — при этом осаждается двуокись. Наименьшая ее растворимость наблюдается при концентрации НС1 около 5 н. (см. рис. 46), которая получается при отношении объемов воды и тетрахлорида (6,5 6) 1. Реакция экзотермична (ДЯмз = 27 ккал/моль). Поэтому процесс проводят при охлаждении. Чем ниже температура, тем выше степень гидролиза. Гидролиз в первые минуты идет очень бурно, затем скорость его резко снижается. Практически гидролиз завершается через 1—2 ч, но постепенное незначительное выделение GeOa может продолжаться до нескольких недель [10]. Снижение температуры приближает момент равновесия. Очевидно, при гидролизе на холоду образуются более мелкие зародыши двуокиси с большой реакционной поверхностью, что ускоряет процесс кристаллизации. Скорость гидролиза зависит также от кислотности среды. Наибольшая скорость при кислотности 5 н., отвечающей минимальной растворимости. Вследствие этого лучше всего вести гидролиз непрерывным способом при постоянной оптимальной кислотности. В таких условиях получается менее дисперсная тяжелая двуокись с меньшим содержанием воды, что также уменьшает адсорбционный захват примесей. [c.196]


Смотреть страницы где упоминается термин Равновесие в процессах кристаллизации: [c.375]    [c.163]    [c.110]    [c.218]    [c.350]    [c.180]    [c.34]    [c.155]    [c.328]    [c.148]    [c.196]    [c.327]   
Смотреть главы в:

Процессы и аппараты химической и нефтехимической технологии Издание третье -> Равновесие в процессах кристаллизации




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация процесс

Равновесие процесс



© 2024 chem21.info Реклама на сайте