Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Захват адсорбционный

    Уже в результате однократного кристаллизационного соосаждения иногда удается достичь весьма заметного эффекта разделения. Однако в большинстве случаев эффект разделения бывает невелик из-за включения маточного раствора в трещины и поры образующихся кристаллов, смачивания поверхности кристаллов маточным раствором, адсорбционного захвата примеси твердой фазой и т. д. Степень загрязнения кристаллов примесью в принципе можно уменьшить путем промывки продукта или последующей его перекристаллизации. Промывка кристаллического продукта свежим растворителем (иногда для [c.154]


    Из инструментальных методов для определения у-гексахлор-циклогексана используют методы ИКС, газожидкостной хроматографии с детектором электронного захвата, адсорбционной хроматографии. [c.435]

    Адсорбент с известной удельной поверхностью помещают в нефть на срок, достаточный для завершения адсорбционных процессов. Нефть декантируют вазелиновым маслом с помощью центрифуги, после чего патрон с адсорбентом переносят в аппарат -Сокслета, где адсорбент очищают от декантатора экстракцией н-гексаном. Затем адсорбционный слой смывают спиртобензольной смесью и отгоняют ее в токе азота. Поскольку возможен захват смол асфальтенами адсорбционного слоя из остатка раствора (после отгонки спиртобензола), асфальтены переосаждают н-гексаном. Осажденные асфальтены отфильтровывают, промывают. -гексаном, сушат в вакууме при температуре не выше 50° С и взвешивают, а затем рассчитывают величину адсорбции в мг на [c.45]

    Адсорбция — это захват ионов, полярных молекул и других примесей поверхностью осадка. Этот процесс объясняется наличием на поверхности твердой фазы свободного силового поля, создаваемого электростатически неуравновешенными периферийными частицами. По правилу адсорбционного осаждения Хана ион-микрокомпонент адсорбируется осадком, если заряд поверхности противоположен по знаку заряду адсорбируемого иона. Адсорбция зависит главным образом от удельной поверхности адсорбента и наиболее характерна для веществ с высокоразвитой поверхностью (например, для аморфных или мелкокристаллических осадков сульфидов, гидроксидов, галогенидов серебра и др.). На величину адсорбции влияют концентрация адсорбированных ионов, температура, природа адсорбируемых ионов. Адсорбция снижается при повышении температуры и при уменьшении концентрации адсорбируемых ионов или адсорбирующей поверхности. В первую очередь адсорбируются ионы, которые составляют кристаллическую решетку осадка или образуют с ним малорастворимое или слабо-диссоциирующее соединение. [c.102]

    Таким образом, Рогинский высказывает мысль, что абсолютно чистых катализаторов не может быть. Во всяких, даже самых чистых реактивах, используемых при приготовлении катализаторов, могут быть примеси других веществ. При осаждении и восстановлении катализатора эти примеси в той или иной степени сохраняются. Далее возможен захват микродобавок из растворов при приготовлении вследствие высокой адсорбционной способности поверхности катализатора. Этот захват микродобавок, в пределах неизбежных при генезисе, способен сильно изменять каталитические свойства твердого тела. [c.128]


    Для дальнейшей интенсификации каталитических процессов необходимо больше внимания уделять возможности кумуляции энергии реакции в системе. Применение специальных методов квантовомеханических расчетов указало на возможность захвата энергии катализатором на адсорбционной и реакционной стадиях процесса в виде колебательной энергии. Если колебания, перпендикулярные плоскости решетки, быстро рассеиваются в окружающую среду, то колебания в плоскости, параллельной решетке, могут длительное время сохраняться кристаллом. В результате на поверхности кристалла возникают горячие точки, на которых захваченная энергия может передаваться молекулам реагирующих веществ опять-таки в виде колебательной энергии. Тем самым осуществляется дополнительная энергетическая активация реагирующих веществ. [c.212]

    РАСЧЕТ ЭФФЕКТИВНОСТИ ЗАХВАТА ЧАСТИЦ ПУЗЫРЬКОМ С УЧЕТОМ СТАБИЛИЗАЦИИ МЕЖФАЗНОЙ ПЛЕНКИ ДИНАМИЧЕСКИМ АДСОРБЦИОННЫМ СЛОЕМ [c.158]

    Основные закономерности, присущие совместной кристаллизации, были установлены Хлопиным, Хайном и сотр. Закономерности адсорбционного захвата малых количеств веществ макроскопическими осадками сформулированы Пакетом. Ханом, Ста риком, Ратнером и др. [c.264]

    Редкоземельные металлы осаждаются с гидроокисью бериллия приблизительно в той же области pH, в которой осаждаются эти металлы в отсутствие носителя. Захват кадмия осадком Ве(ОН)2 происходит при pH 7—8 (pH полного выделения гидроокиси кадмия) [646]. В приведенных примерах характер влияния температуры, времени соприкосновения носителя с раствором, концентрация примесей на величину осаждения подтверждают адсорбционную природу захвата примесей гидроокисью бериллия. [c.154]

    Поскольку при адсорбции на центрах Г = / Ма, то, в отличие от уравнения (3.1.13), константа адсорбционного равновесия в уравнении (3.1.20) не включает в себя предельной адсорбции, но содержит площадь центра захвата 5  [c.556]

    Увеличение эффективного коэффициента распределения по сравнению с равновесным при ko< 1 происходит также за счет адсорбции. При сильной адсорбции примесь захороняется нарастающими слоями, не успев десорбироваться. Чем больше скорость роста и чем выше энергия адсорбции примеси, тем выше вероятность захвата адсорбированных частиц кристаллом. В отличие от описанных выше диффузионных эффектов сильная адсорбция может приводить к эф>1 и при ко<. В практике выращивания монокристаллов из низкотемпературных растворов такие случаи довольно часты. Поскольку ко бывает больше 1 только для изоморфной примеси, а эффективно влияет на рост адсорбционно-активная неизоморфная примесь, то описанные случаи легко распознаются при очистке веществ путем перекристаллизации ( 4.1), когда обнаруживается, что прямая перекристаллизация не очищает, а загрязняет вещество (загрязнение вещества устанавливается по [c.56]

    На эффективность процесса фракционной кристаллизации сильное влияние оказывает захват маточной жидкости кристаллической фазой. При этом механизм захвата может быть разным. Маточник может удерживаться на поверхности кристаллов адсорбционными силами в виде тонкого слоя, удаление которого при фильтрации практически не происходит. Этот слой можно удалить с поверхности кристаллов только при их тщательной промывке. Следует отметить, что с увеличением размеров кристаллов уменьшается их удельная поверхность и соответственно снижается количество адсорбированного маточника. [c.46]

    В процессе флотации частицы руды захватываются пузырьками воздуха и, всплывая с ними (рис. Х1-3), прочно удерживаются в пене. После того как это было доподлинно установлено (примерно в 1915 г.), было предложено несколько теорий флотации. В одной из них захват частиц пирита пузырьками воздуха объяснялся тем, что пузырьки воздуха и частицы кварца заряжены отрицательно, тогда как частицы пирита заряжены положительно. Таким образом, селективная адгезия между частицами пирита и пузырьками воздуха связывалась с электростатическим взаимодействием. Уже к 1919 г. становится ясно, что основную роль в процессе флотации играют не электростатические силы, а краевой угол. Однако в настоящее время признается, что электрический заряд частиц в значительной мере определяет их адсорбционные свойства и, следовательно, краевой угол и адгезию к пузырькам. [c.371]

    Процессы захвата неравновесных электронов и дырок поверхностными центрами служат своеобразным индикатором характера силового взаимодействия адсорбированных молекул с полем адсорбента. Заметим, что здесь не идет речь о хемосорбции, при которо происходит частичный или полный перенос зарядов. Однако, как показывает опыт, даже при вполне обратимых адсорбционных процессах (с характерными для физической адсорбции теплотами) происходит возмущение электрического поля адсорбента. Источником возмущающего действия считают либо электрическое поле диполя молекулы воды [1], либо более сложное координационное взаимодействие [8]. [c.111]


    Последний эффект может быть рационально объяснен [6, 127] быстрым достижением равновесной толщины адсорбционного слоя, которая, как было показано [6, 130, 139], мало зависит от М полимера. В этом случае флокуляция определяется захватом, фиксацией приближающейся непокрытой частицы периферической частью адсорбированных петель, средняя длина которых мало зависит при данной величине адсорбции от М. Существенная зависимость эффективности флокуляции от М при единовременном добавлении ВМС обусловлена, вероятно, влиянием кинетического фактора — тем, что время установления адсорбционного равновесия высокомолекулярного вещества на частицах значительно больше, чем промежуток между столкновениями частиц в результате броуновского движения. Размеры частично адсорбированной макроцепи могут существенно отличаться от таковых в равновесных условиях. Чем выше степень полимеризации, тем медленнее устанавливается равновесие адсорбции полимера и тем длиннее петля и хвосты на поверхности в первый момент адсорбции. Следовательно, вероятность захвата приближающейся частицы в этих условиях будет выше для высокомолекулярных образцов, что и объясняет увеличение степени агрегации с ростом М флокулянта. Эти соображения были подтверждены теоретическими расчетами (методом Монте-Карло) динамического поведения изолированной макромолекулы вблизи адсорбирующей пов ерхности (Бирштейн и др., 1981). [c.142]

    Экспериментальное исследование реакций изотопного обмена начинается с установления самого факта обмена. Прежде всего необходимо показать, что наблюдаемый перенос атомов радиоактивного изотопа не связан с какими-либо побочными процессами (неполнота разделения участвующих в обмене веществ, адсорбционный захват, сокристаллизация), т. е. что радиоактивный изотоп находится в форме молекул первоначально неактивного соединения. Применимость уравнения (13) является необходимым, но недостаточным условием для того, чтобы считать изучаемый процесс действительно изотопным обменом. Важнейшим показателем таких реакций служит практическая невозможность отделения радиоактивного изотопа от первоначально неактивного вещества, т. е. сохранение удельной активности этого соединения при любых операциях очистки. [c.20]

    Можно было бы привести еще ряд примеров адсорбционного механизма захвата примесей. [c.229]

    При проведении группового концентрирования следует исходить из адсорбционного механизма захвата примесей коллектором. В этих случаях необходимо обратить особое внимание на роль условий, в которых происходит образование макрокомпонента [c.231]

    Основные узлы хроматографа соответствуют показанной на рис. 3.2 схеме. Разработано несколько типов устройств отбора проб как жидких (шприцы), так и газообразных (кран-дозатор, показанный на рис. 2.3). Любое из этих устройств может работать под управлением компьютера, при этом точность анализа увеличивается. Собственно разделение проводится в одной или нескольких хроматографических колонках, которые могут заполняться различными сорбентами. Длина колонки, температура, поток газа и свойства сорбентов — все это сильно влияет на эффективность разделения. Хроматограф может иметь одну или несколько колонок, расположенных параллельно или последовательно в зависимости от цели, которую нужно достичь. Элюируемые из колонки (колонок) компоненты обнаруживаются при помощи одного или нескольких детекторов. В хроматографии применяются следующие типы детекторов катарометры, пламенно-ионизационные, термоионные, электронного захвата, пламенно-фотометрические, атомно-адсорбционные, спектроскопические, электрохимические, радиометрические, фотоионизационные и т. д. Детекторы этих типов различаются по чувствительности, селективности и инерционности. В литературе [49, 50] описаны некоторые типы детекторов, обычно используемые в газовой хроматографии. [c.110]

    По истечении 20—25 мин открывают пробку и отбирают несколько капель раствора пипеткой, кончик которой обмотан слоем ваты, чтобы не захватить с раствором катализаторную пыль. Определяют также коэффициент преломления исходного 40%-ного раствора толуола в изооктане. Активность адсорбента (адсорбционную способность) выражают в миллилитрах толуола, адсорбированного 1 г адсорбента, и вычисляют на основании разности величины коэффициента преломления до и после адсорбции раствора. Однако, учитывая, что в растворе кроме толуола находится также и изооктан, необходимо в формулу расчета ввести величину К [c.107]

    СООСАЖДЕНИЕ, частичный переход компонента р-ра (расплава, пара), присутствующего в малых концентрациях (микрокомпонента), в твердую фазу, образуемую в данной системе др. компонентом, к-рый находится в значительно больших концентрациях (см. Макро- и микрокомпоненты). Важнейшая особенность С. состоит в том, что находящийся в первоначально гомог. системе микрокомпонент не может в условиях проведения процесса (при понижении т-ры, удалении р-рителя, изменении pH и т. п.) образовать самостоят. твердую фазу, а вовлекается в твердую фазу вместе с макрокомпонентом. Переход микрокомпонента в твердую фазу при С. обусловлен тем, что он распределяется между исходной маточной средой (р-ром, расплавом, паром) и твердой фазой. Микрокомпонент м.б. локализован на пов-сти отдельных частиц твердой фазы (адсорбц. захват, адсорбционное С.) или в объеме (абсорбц. захват, абсорбционное С.). Включение микрокомпонента в твердую фазу может происходить посредством образования твердого р-ра с макрокомпонентом, вовлечения в формирующийся осадок маточной среды (окклюзионное С.), а также посредством адсорбции на гранях сросшихся микрочастиц и блоков текстуры осадка (внутренне-адсорбционное С.). Если выделяющаяся твердая фаза является кристаллической, то говорит о сокристаллизации микро- и макрокомпонеитов. [c.384]

    Гидролиз тетрахлорида. Очищенный Ge U гидролизуют — при этом осаждается двуокись. Наименьшая ее растворимость наблюдается при концентрации НС1 около 5 н. (см. рис. 46), которая получается при отношении объемов воды и тетрахлорида (6,5 6) 1. Реакция экзотермична (ДЯмз = 27 ккал/моль). Поэтому процесс проводят при охлаждении. Чем ниже температура, тем выше степень гидролиза. Гидролиз в первые минуты идет очень бурно, затем скорость его резко снижается. Практически гидролиз завершается через 1—2 ч, но постепенное незначительное выделение GeOa может продолжаться до нескольких недель [10]. Снижение температуры приближает момент равновесия. Очевидно, при гидролизе на холоду образуются более мелкие зародыши двуокиси с большой реакционной поверхностью, что ускоряет процесс кристаллизации. Скорость гидролиза зависит также от кислотности среды. Наибольшая скорость при кислотности 5 н., отвечающей минимальной растворимости. Вследствие этого лучше всего вести гидролиз непрерывным способом при постоянной оптимальной кислотности. В таких условиях получается менее дисперсная тяжелая двуокись с меньшим содержанием воды, что также уменьшает адсорбционный захват примесей. [c.196]

    Адсорбш радионуклидов на кристаллических осадках. Соосаждение радионуклида с кристаллическим осадком может происходить в результате адсорбции. При этом адсорбционный захват микрокомпонента зависит от величины поверхности осадка. Адсорбционный вид соосаждения таким образом имеет существенное значение при образовании осадков с сильно развитой поверхностью. На гетерогенных кристаллах в зависимости от состояния в растворе радионуклида может происходить как ионная, так и молекулярная адсорбия. [c.321]

    Экстракционные методы отделения и разделения элементов получили широкое применение в аналитической химии. Особенно большое распространение экстракция нашла в технологии ядерных материалов и переработке облученного ядерного горючего, а также для отделения а-ктинидных элементов от примесей и их разделения в лабораторной практике. Это объясняется тем, что экстракционные методы имеют большие преимущества перед другими способами очистки и разделения, в частности перед методами осаждения. Малая поверхность раздела несме-шивающихся фаз практически исключает адсорбционный и механический захват примесей. Кроме того, экстракционные методы характеризуются селективностью, быстрым разделением элементов, возможностью создания непрерывных методов разделения и сравнительной легкостью изготовления дистанционных установок, которые позволяют анализировать высокоактивные растворы. К достоинствам экстракции следует отнести также возможность извлечения очень малых количеств элемента, концентрация которого может быть ниже предела растворимости обычных осадков. [c.303]

    Можно предположить, что избыточное поглощение газа наполненными полимерами обусловлено как адсорбционными процессами на поверхности частиц наполнителя, так и механическим захватом пузырьков газа в виде аэрофлокул прилипающих к поверхности частиц, аналогично тому, как это имеет место при флотации Отдельные участки на поверхности частиц наполнителя, например сажи, неравноценны по своей физической и химической природе, что обусловливает различную сорбционную способность этих участков Опыты по сорбции бутена на саже позволили установить, что наибольшее выделение тепла происходит при заполнении лишь 40% поверхности сажевых частиц монослоем молекул бутена Возможность адсорбции газа на участках поверхности частиц наполнителя, не смоченных полимером, подтверждается в некоторых случаях высокой теплотой сорбции газа, зависящей от степени дисперсности наполнителя а также наличием адсорбционно-связанного газа на поверхности минеральных частиц до введения их в полимер В других случаях, например при введении инертных наполнителей — мела или барита, вероятность адсорбции невелика и большие значения коэффициентов сорбции, по-видимому, обусловлены присутствием механически захваченного при изготовлении смеси газа, пузырьки которого сохраняются в резине за счет фиксации ее структуры при вулканизации. Известно, что удаление газов из резиновых смесей в процессе вулканизации или путем предварительного вакуумирования минеральных наполнителей улучшает взаимодействие наполнителя с каучуком и повышает показатели механических свойств резин [c.195]

    Лучше всего изучено соосаждение рзэ с СаС204.Н20, образующимся в растворе при 100° С. При осаждении оксалата кальция из уксуснокислого раствора в присутствии 50% Е10Н (pH 2) на 30 мг Са можно выделить полностью не только свободные от носителя рзэ и У, но даже и весовые их количества (до 0,25 мг). При этом было выяснено, что соосаждение связано с адсорбционным механизмом захвата [1666, 1667]. Одновременно происходит отделение рзэ от Р02 , Ве, А1, 2г, Ре, ТЬ и и. Суммарное количество перечисленных элементов-примесей может превышать количество рзэ в сотни раз. При более низких температурах осаждения оксалата наряду с моногидратом СаС204-Н20 выделяются и высшие гидраты этой соли, один из которых способен образовывать с рзэ смешанные кристаллы, благодаря чему можно повысить количество соосаждающегося вещества [1667]. [c.70]

    При повышении температуры скорость межфазной стадии возрастает быстрее, чем скорость диффузии. Таким образом, с повышением температуры должны возрастать диффузионное влияние на рост кристалла, вероятность возникновения включений, скелетного роста, появления толстых слоев на гранях. Тем не менее частота образования включений, например на некоторых гранях кристаллов нитрата калия, с температурой уменьшается. Для объяснения указанного факта можно привлечь уже изложенные представления о существовании адсорбционного слоя раствора на грани. Поскольку повышение температуры ослабляет химические связи в адсорбционном слое, следствием этого является уменьшение ориентирующего действия поверхности кристалла на раствор, специфическое (зависящее от конкретной грани) уменьшение толщины этого слоя, короче говоря, десольватация грани. Видимо, этот процесс идет с повышением температуры достаточно интенсивно, что и вызывает уменьшение частоты возникновения включений раствора. Другая возможная причина уменьшения частоты возникновения включений может заключаться в так называемом недиффузионном захвате материала, обусловленном тем, что кристалл при росте занимает пространство, часть которого уже была занята веществом, находившимся в растворе и непосредственно использованном на постройку кристалла. Так как с повышением температуры концентрация раствора увеличивается, то увеличивается и часть объема, занятая этим веществом. Соответственно уменьшается и роль объемной диффузии. Роль недиффузионного захвата в уменьшении частоты возникновения включений может быть особенно заметна для нитрата калия, растворимость которого сильно возрастает с температурой. [c.47]

    Здесь р — локальное давление газа в зернах адсорбента рг — давление газа над адсорбентом Х>эфф = DIT, D — коэффициент молекулярной диффузии, Г = daldp а — адсорбция Q — массовая скорость потока -о — характеристический размер А vl f площадь поверхности и доля живого сечения адсорбционной камеры O — толщина слоя а — коэффициент захвата молекул газа vi коэффициенты формы зерен = = 36,38/ Т/М м/с. [c.332]

    На рис. 1 и 2 представлены опытные данные для изученных адсорбентов. В соответствии с теорией в начальный период времени величина 1/F линейно зависит от а затем от т. По точкам пересечения с осью ординат и наклону прямых определены значения кинетических параметров адсорбентов (адсорбируемость Г, коэффициент диффузии Вафф, коэффициент захвата а), позволяющие рассчитывать с помощью уравнений (6) и (7) адсорбционные насосы с применением адсорбентов различных типов. [c.333]

    Ю. А. Зарифьянц (Московский государственный университет им. М. В. Ломоносова, физический факультет). Теоретическое рассмотрение адсорбционного взаимодействия исходит из наличия термодинамического равновесия в системе адсорбент — адсорбат. При этом считается естественным, что электронный ансамбль диэлектрика или полупроводника также находится в тепловом равновесии с решеткой. Однако в реальных кристаллах очень важную роль играют также неравновесные процессы, связанные с отклонением концентрации свободных носителей от равновесной за счет тепловых флуктуаций или под действием внешнего возбуждения (света, электрического поля и т. д.). В обоих случаях образуется пара электрон — дырка, которая странствует но решетке до тех нор, пока не происходит их рекомбинация на каком-нибудь центре, обладающем достаточной вероятностью захвата обоих типов носителей. Выделяющаяся при этом энергия либо передается решетке, либо уносится фотоном. [c.110]

    Поэтому важно было выяснить, не могут ли здесь возникать еще какие-либо промежуточные состояния, отличные от С02(адс)-Ряд важных сведений был получен в опытах по адсорбции углекислого газа на закисномедном катализаторе. Было найдено, что углекислый газ может адсорбироваться на окисле только в том случае, если на нем был предварительно адсорбирован кислород или если углекислый газ впускали вместе с кислородом. На обезгаженном окисле адсорбция углекислого газа оказывалась ничтожно малой. Наибольшее количество СОг адсорбировалось при совместном впуске кислорода и СОг. Результаты, полученные при измерении скорости выделения тепла в адсорбционном калориметре, подтвердили, что кислород, отличающийся высокой теплотой адсорбции (55 ккал/моль), адсорбируется первым. На основании этих данных можно сделать вывод о том, что для достижения устойчивого состояния на поверхности углекислый газ должен находиться в виде какого-то комплекса с кислородом. В результате увеличения отношения СО2/О2 в газовой смеси, подводившейся к окислу, удалось осуществить захват большего количества кислорода углекислым газом, и отношение СО2/О2 в адсорбированном состоянии приблизилось к 2 1. Поскольку кислород, по-видимому, находится на поверхности главным образом в виде атомов, то наиболее вероятной формулой для такого комплекса будет СО3. [c.314]

    Несмотря на то что эта теория имеет много еще не проверенных допущений, она строится на прочном фундаменте. Недавно было отмечено [17], что в хемосорбции экситонная связь играет большую роль она образуется и в чистом виде , и как составляющая часть гибридной связи. Адсорбционные экситоны в полупроводнике локализованы, но оптические и тепловые экситоны перемещаются, перенося энергию по кристаллу или вдоль системы связей макромолекулы. Захват энергии реакции агграватором и перенос ее по периферии катализатора к точке возникновения химической связи с молекулой реагента, очевидно, можно рассматривать как образование перемещающихся экситонов. [c.19]

    В системе же Na l — РЬ начальная скорость / 1 10" mJ k достаточно мала, чтобы практически с первого момента соосаждения диффузией в процессе захвата можно было пренебречь, а изменение коэффициента К объяснить факторами, действующими в адсорбционно-кинетическом режиме. [c.257]

    Сущность этого рода активации теорией пока не раскрывается. Однако, если рекуперация энергии при катализе действительно связана, как это предполагает Н. И. Кобозев [71], с экси-тонпыми явлениями, то вопрос об эффекте аггравации в общей проблеме катализа приобретает очень важное значение. Видимо, он может быть поставлен в один ряд с вопросами об электронном механизме хемосорбции, о матричном эффекте в катализе и т. п. В самом деле, ведь экситонные явления не могут не играть важной роли при взаимодействии реагента с катализатором, тем более с полупроводниковым катализатором. Как было отмечено Э. Л. Нагаевым [76], экситонная связь в хемосорбции рассматривается и как таковая, т. е. в чистом Виде , и как составляющая часть гибридной связи. Адсорбционные экситоиы в полупроводнике локализованы, но оптические и тепловые экситоны перемещаются, перенося энергию по кристаллу или вдоль системы сопряженных связей макромолекулы. Захват энергии реакции аг-граватором, очевидно, можно рассматривать как образование тепловых экситонов, а перенос ее от периферии катализатора к точке возникновения химической связи с молекулой реагента можно считать перемещением теплового экситона. [c.114]


Смотреть страницы где упоминается термин Захват адсорбционный: [c.47]    [c.122]    [c.119]    [c.439]    [c.67]    [c.20]    [c.365]    [c.365]    [c.79]    [c.84]    [c.129]    [c.228]    [c.253]    [c.254]    [c.114]   
Радиохимия и химия ядерных процессов (1960) -- [ c.68 , c.76 , c.84 , c.86 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Захват



© 2025 chem21.info Реклама на сайте