Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы лабораторной экстракции

    МЕТОДЫ ЛАБОРАТОРНОЙ ЭКСТРАКЦИИ [c.405]

    Таким образом, метод кислотной экстракции позволяет по лучать концентраты азотсодержащих оснований из бензиновых и средних фракций нефтей. Однако относительно низкий выход и сложность дальнейшего разделения концентрата на однотипные группы соединений ограничивает применение метода лабораторными рамками. [c.90]


    В лабораторных условиях (обычно в стекле) подбирают экстрагенты для разделения сложных смесей, а также определяют условия отстаивания промышленных систем перед испытаниями на укрупненных опытных установках (пилотные испытания). Жидкостная экстракция стала одним из стандартных методов, применяемых во многих операциях аналитической химии, причем специальные экстракционные методы и аппаратура, разработанные для анализа сложных природных и синтетических продуктов, также представляют интерес для инженера-технолога. На основе полученных этими методами лабораторных результатов в дальнейшем можно разработать промышленные экстракционные процессы. [c.404]

    Во всех указанных случаях представляется необходимым осуществление многоступенчатой экстракции в лабораторных условиях. При проведении лабораторной экстракции основные параметры (объемное соотношение фаз, число ступеней и др.) должны соответствовать тем же параметрам в промышленном процессе, так как определить их расчетом для сложных систем невозможно. Только при таком условии можно по лабораторным данным выяснить, какие результаты может дать экстракция в крупном масштабе. Это значит, в частности, что в лаборатории обычно необходимо исследовать процесс противоточной многоступенчатой экстракции, поскольку в промышленности для повышения эффективности процессы экстракции обычно осуществляют по противоточной схеме. Истинно противоточный процесс должен быть непрерывным. Однако на стадии лабораторной разработки обычно имеется недостаточное количество исходных веществ, чтобы проводить непрерывную экстракцию. Поэтому используют один из следующих методов  [c.405]

    По принципу разделяющего эффекта аналитические и препаративные методы фракционирования можно разделить на группы, приведенные в табл. 6.1. В монографиях [1, 2] приводятся таблицы примеров применения указанных методов для фракционирования некоторых полимеров. В лабораторной практике используют комбинацию различных методов фракционирования, например, дробное осаждение и экстракцию, комбинацию этих методов с седиментационным анализом. Методы препаративного фракционирования могут использоваться в различных вариантах, зависящих от цели исследования и вида полимерного образца. Так, фракционирование из растворов может быть осуществлено методами дробного фракционирования и фракционирования на колонке с градиентом температуры дробное экстрагирование (как по изменению температуры, так и по скорости диффузии) может быть осуществлено из порошков, коацерватов, из тонких пленок, образованных нри нанесении полимера из растворов на инертные носители. Для олигомерных продуктов практически невозможно применение метода дробного осаждения. Часто удобно вместо дробной экстракции использовать метод непрерывной экстракции — с постепенной заменой осадителя растворителем. [c.205]


    Определение содержания сырого жира в лузге или шелухе методом исчерпывающей экстракции. При определении содержания масла в подсолнечной лузге, в оболочках соевых бобов, клещевины и горчицы выделяют из лабораторной пробы методом диагонального деления около 20—30 г лузги вместе с выносом. Выделенную порцию предварительно подсушивают при температуре 105° С в течение 1 ч и измельчают в металлической ступке до тех пор, пока самые крупные частицы подсолнечной лузги не примут вид тонких игл длиной, не более четверти семени или волокон, частицы же оболочек семян других культур — вид порошка. [c.312]

    Разбираются основные типы экстракционных процессов (экстракция с перекрестным током, противоточная экстракция, экстракция двумя растворителями, экстракция с орошением). Для каждого типа процесса приводятся расчетные формулы и методы лабораторных исследований. [c.4]

    В книге рассмотрены основные типы экстракционных процессов — экстракция с перекрестным током (гл. III), противоточная экстракция (гл. IV), экстракция двумя растворителями (гл. V) и экстракция с орошением (гл. VI), — обсуждаются их достоинства и недостатки. Для каждого типа процесса приводятся расчетные формулы и методы лабораторных исследований. Кроме того, для большей ясности изложения включены также следующие разделы фазовое равновесие (гл. I), где дается общий обзор правила фаз в той мере, в какой это важно для теории экстракции, и треугольная диаграмма (гл. II), где со ссылками на теорию равновесия в тройных системах описаны методы экспериментального определения данных, необходимых для расчета экстракционных процессов. [c.9]

    Метод противоточной экстракции используют не только в производственных, но и в лабораторных условиях при опробовании новых экстракционных аппаратов или новых экстрагентов. [c.93]

    Усиление извлечения фенолов при экстракции их смешанным растворителем из подсмольной воды было подтверждено методом лабораторной трехступенчатой противоточной экстракции. Смешанный экстрагент состоял из диизопропилового эфира и технических спиртов (плотность = 0,818 и н. к. 113°С), выкипающих в следующих температурных пределах (в °С)  [c.107]

    Для второго эксперимента [878 ] был выбран бутадиен-стирольный карбоксилатный каучук, обладающий совместимостью с ПЭ и способностью образовывать комплексные соли с двухвалентными металлами (2пО, MgO). Механосинтез проводили в лабораторном экструдере при 170—210 °С. Конверсию ПЭ и структуру модифицированного полимера изучали методами избирательной экстракции, дифракции рентгеновских лучей, ИКС и ЯМР. Введение 5 % каучука повышает плотность исходного ПЭ и способствует формированию более совершенной и мелкодисперсной кристаллической структуры. Увеличение содержания модифицирующей добавки снижает кристалличность полимера (по данным ЯМР). Варьируя количество каучука и окиси и проводя процесс при оптимальных температурах, можно получить материал с улучшенными механическими и деформационными характеристиками. Структурная модификация ПЭ улучшает также его реологические свойства, стойкость к термоокислительной деструкции и сопротивление "старению (табл. 5.15). [c.188]

    Число ступеней контакта (ЧСК) определяют по числу ступеней экстракции, которые необходимо провести для получения рафината того же качества при очистке данного сырья в лабораторных условиях методом периодического противотока. Число теоретиче- [c.100]

    В лабораторной практике в качестве селективных растворителей чаще других применяют жидкий сернистый ангидрид (один и вместе с бензолом), уксусную кислоту, ацетон, нитробензол, фенол, анилин и др. Так же как и в методе адсорбции и кристаллизации разделение при селективной экстракции — неполное, и для повышения четкости разделения требуется многократное повторение операции селективной экстракции. [c.177]

    Если коэффициенты распределения двух веществ между двумя растворителями различаются, то с помощью экстракции эти вещества можно разделить. В том случае, когда коэффициенты распределения близки, процесс многократно повторяют. В лабораторных условиях для этой цели используют автоматический аппарат Крэйга. При промышленном разделении процесс проводят либо в каскаде аппаратов типа смеситель-отстойник, либо в противоточных экстракционных колонках. Метод экстракции часто используют для разделения таких смесей, которые трудно разделить другими методами, например для разделения смесей биологических продуктов. [c.151]

    До настоящего времени большинство предложенных методов было реализовано в лабораторных масштабах, поэтому часто их даже трудно отделить от аналитических. Основные методы отделения скандия от примесей 1) осаждение, 2) конденсация и сублимация 3) ионный обмен 4) экстракция. Отметим, однако, что ни один из перечисленных методов не является строго специфичным для скандия получить его соединения высокой степени чистоты можно, лишь комбинируя и сочетая ряд методов. [c.18]


    Экстракция щироко применяется во многих областях техники и в лабораторных исследованиях. На экстракции основано извлечение сахара (из свеклы), дубильных веществ, канифоли, очистка и разделение многих нефтепродуктов. При экстракционном методе достигается более полное извлечение масел из семян, чем при механическом прессовании. Экстракция используется в производстве анилина (извлечение анилина из водных растворов). Экстрагирование, как од гч из методов концентрирования веществ, используется в настоящее время в анализе с целью повышения чувствительности ряда определений. [c.249]

    Лабораторгтая экстракция применяется для химического анализа сложных смесей и является первоначальной стадией разработки производственных экстракционных процессов. Разделение многих грудиоразделяемых смесей впервые было осуществлено в лаборатории для аналитических целей и стало представлять промышленный интерес, лишь когда появилась потребность в производстве одного из разделяемых веществ. Необходимость оценивать технические и экономические аспекты применения результатов лабораторной экстракции в промышленном масштабе возникает довольно часто. По этим причинам в книге рассматриваются также методы лабораторной экстракции. [c.19]

    Методы экстракционного анализа слЛкных систем весьма многообразны. Они подробно рассматриваются в работах Хе-кера 2,33 До их пор наибольшее значение имеют методы лабораторной экстракции, предложенные Крэгом. Для их практического применения он разработал ряд остроумных устройств. Крэгу удалось осуществить некоторые эффективные процессы разделения на предложенной им аппаратуре, и методы разделения по Крэгу получили широкое распространение. Литература, посвященная описанию техники эксперимента при использовании этих методов и способам интерпретации получаемых с их помощью данных, очень обширна. В нашу задачу не входит ее подробное рассмотрение для более детального ознакомления с методами Крэга можно рекомендовать работы Крэга Хе-кера и Вайнерона Ч [c.423]

    Экстракция органическими растворителями (сольвентная экстракция) — один из важнейших способов лабораторного и промышленного выделения ГАС из углеводородных систем. В качестве растворителей, позволяющих отделять ГАС от углеводородов, испытано большое число полярных органических соединений (фенолы, нитробензол, нитрофенол, анилин, фурфурол, низшие кетоны и спирты, ацетофенон, ацетил-фуран, ацетилтиофен, диметилформамид, ацетонитрил, диметил-сульфоксид и др. [58—63]), но ни одно из них не дает четкого разделения, и полученные экстракты, как правило, содержат значительную долю полициклоароматических углеводородов. Для повышения эффективности разделения экстракция часто проводится в системе, содержащей два сольвента, не смешивающиеся между собой или обладающие ограниченной взаимной растворимостью пропан и фенол [64], циклогексан и диметилформамид [65] и т. д. Экстракционная способность полярных растворителей по отношению к отдельным группам нефтяных ГАС может существенно различаться. Так, диметилформамид экстрагирует из масляных дистиллятов карбоновые кислоты в 7—8 раз эффективнее, чем сернистые соединения [66 ]. Однако практически использовать эти различия для четкого фракционирования ГАС на отдельные типы чрезвычайно трудно, в связи с чем методы сольвентной экстракции обычно служат средством отделения суммы ГАС или грубого разделения высокомолекулярных ГАС в соответствии со средней полярностью их молекул (не по функциональному признаку) [67-69]. [c.10]

    Комплексный метод лабораторного испытания масел Папок, Данилина и Зусевой. Этим методом предусматривается испарение масла в тонком слое при 250° С в течение 30 мин (определение моторной испаряемости ) и экстракция петролейным эфиром неиспарив-шегося масла (определение рабочей фракции ). Остаток масла, не экстрагируемый петролейным эфиром, принимается за лак, который образовался в результате окисления и полимеризации в условиях испарения. По соотношению в испытуемом масле испарившейся части, рабочей фракции и образовавшегося лака при разной температуре или при нагревании в течение различного времени при постоянной температуре судят о моторных качествах масла. Обычно результаты испытания выражают в виде графиков. [c.178]

    В этом издании описаны методы лабораторного селективного выпаривания для выделения германия и галлия. В лучших экспериментах выделяется от 85 до 98 % ермания в виде низших оксидов и сульфидов, и от 75 до 97 % галлия в виде низ-иих оксидов и трехлорида галлия. Концентрация получаемых концентратов непостоянна и содержание выделяемых соединений изменяется от нескольких сотых П.0 8 % в зависимости от использованного метода. При первичной экстракции одного германия коэффициент экстракции превышает 100, для галлия ои равен 30. Обогащение концентрата может быть проведено путем упаривания, выщелачивания и осаждения. [c.157]

    Поскольку метод периодической многократной экстракции оксикислот мало пригоден не только для контроля производства, но и для лабораторных работ и не обеспечивает получения сходящихся результатов в параллельных опытах, был разработан метод непрерывной экстракции. Последняя производилась в специальном непрерывно действующем экстракционном аппарате, работающем по принципу так называемых перфораторов Шахерля [12] для жидких сред. [c.23]

    В реакционной смеси, полученной конденсацией изовалерианового альдегида с формальдегидом в оптимальных условиях проведения процесса, содержится триола 9%, побочных продуктов 3%, формиата натрия 5%, непрореагировавшего формальдегида 11% и около 72% воды и метилового спирта. Количественное выделение триметилолизобутана из этой смеси разгонкой остатка, полученного после предварительного концентрирования раствора и осаждения формиата натрия изопропиловым спиртом, не представилось возможным, т. к. нри этом не удается полностью удалить формиат. В остатке, полученном после отгонки изонронилового спирта, содержится 2 —3 % формиата натрия, 65 —70 % треметилол-изобутана и 28—33% побочных продуктов конденсации. Выделение триметилолизобутана из такой смеси без заметного разложения возможно перегонкой при остаточном давлении в 2—5 мм рт. ст., что легко достигается в лабораторных условиях, но трудно осуществлять в промышленности. Выделение триметилолизобутана удовлетворительно достигается методом селективной экстракции на противоточной экстракционной колонне, подобно той, которая была использована нами для выделения и анализа триола (рис. 1). [c.161]

    В лабораторных и полупромьшшенных масштабах для концентрирования и очистки культуральных жидкостей применяются также методы электроудерживания, экстракции, различные виды хроматографической очистки, магнитное сепарирование и ряд других. [c.26]

    Определение числа ступеней струйной колонны проводилось для процесса извлечения ароматических углёводородов из газойля фурфуролом. При этом находилось также необходимое число теоретических ступеней равновесия при определенных граничных концен-грациях в лабораторных делительных воронках. Лабораторная экстракция осуществлялась по широко известному методу, описанному Альдерсом [5]. [c.317]

    Метод селективной экстракции жидкими растворителями может широко применяться для выделения сернистых соединений из нефтяных дистиллятов. Он удобен тем, что не требует больших затрат времени и сложного лабораторного оборудования. Как показали исследования многочисленных авторов [35. 36, 41, 44, 45], с его помощью можно получать серии.стые концентраты, содержащие в основном сульфиды. Тем не менее метод не лишен недостатков. Прежде всего, с повышением молекулярного веса фракции степень извлече1и1я сернис- [c.25]

    В реакционной смеси, полученной после конденсации изовалерианового альдегида с формальдегидом, при выбранных условиях проведения процесса содержится 9% триола, 3% побочных продуктов, 5% формиата натрия, 2% непрореагировавшего формальдегида и 81% воды с метанолом. Количественное выделение триметилолизобутана из этой смеси разгонкой остатка, полученного после предварительного концентрирования раствора и осаждения формиата натрия изопропиловым спиртом, не представлялось возможным, так как при этом не удается полностью удалить формиат натрия. В остатке, полученном после отгонки изопропилового спирта, содержится 2—3% формиата натрия, 65—70% триметилолизобутана и 28—33% побочных продуктов конденсации. Выделение триметилолизобутана из такой смеси без заметного разложения возможно перегонкой при остаточном давлении 2—3 мм рт. ст., этого легко достигнуть в лабораторных условиях, но трудно осуществить в промышленности. Выделение триметилолизобутана удовлетворительно достигается методом селективной экстракции на противоточной экстракционной колонне с непрерывной подачей свежего растворителя и с промывкой экстракта от неорганических солей небольшим количеством воды по способу, описанному нами выше (стр. 76), а также методом азеотропной отгонки воды бутилацетатом. [c.151]

    Когда потребовалось произвести очистку многих тонн урана, был принят метод эфирной экстракции Пелиго. Предварительные результаты его использования были описаны Гофманом [13]. Однако ряд исследователей после Пелиго сообщал о взрывной реакции между нитратом уранила и эфиром, и процесс считался опасным даже для осуществления в лабораторном масштабе. Тем не менее, уже к апрелю 1942 г. был разработан безопасный вариант промышленного процесса, и в июле 1942 г. установка эфирной экстракции давала очищенную двуокись урана в количестве 1 т в день [14]. Этот процесс велся в основном периодически и описан в начале глав III, V и VI в операциях очистка нитрата уранила экстракцией растворителем, денитрация и восстановление до двуокиси. Он был разработан и внедрен на заводе Меллинкродт Кемикал в Сент-Луисе. Аналогичные заводы были вскоре пущены компаниями Дюпона, Линде Эйр Продактс и Харшоу Кемикал . [c.14]

    Комплексный метод лабораторного испытания масел Папок, Данилина и Зусевой. Этим методом предусматривается испарение масла в тонком слое при 250 °С в течение 30 мин (определение моторной испаряемости ) и экстракция петролейным эфиром неиспари-вшегося масла (определение рабочей фракции ). Остаток масла, не экстрагируемый петролейным эфиром, принимается за лак, который образовался в результате окисления и полимеризации в условиях [c.183]

    В лабораторной диагностике инфекционных заболеваний реакция преципитации служит главным образом для выявления или идентификации антигена (преципитиногена) по известной преципитируюшей сыворотке, содержащей антитела (преципитины). Для приготовления коллоидных антигенов, участвующих в реакции преципитации, используют различные методы их экстракции из исследуемого материала физические, химические и биологические. [c.113]

    Такие эмпирические данные обычно получаются на лабораторных или пилотных установках по экстракции их можно представить н различных удобных формах. Характер данных и выбор метода их представления часто зависят от факторов, имеющих больший интерес для потребите ля. Обычно экспериментальные данные по экстракции смазочных масел одшхм растворителем даются по форме, приведенной на рис. 28. Совокупность таких графиков дает возможность производить интерпо-чяцню переменных в пределах интервала, соответствующего условиям очистки, применяемым для данного масла. Для другого сорта масла потребуются совершенно новые данные, дающие возможность определить заранее влияние различных переменных на экстракцию. [c.195]

    Разделение ароматическах групп. В принципе выделение ароматических групп может быть доведено до К9нца любым методом, использующим различие в физических свойствах абсорбции и адсорбции экстракция и хроматография являются основами таких методов. В противоположность крупномасштабным процессам, примевяемым в переработке, где до сих пор экстракция шире применяется, чем хроматография, при лабораторных исследованиях лучшие результаты достигаются при помощи хроматографии. Преимущество этого метода разделения связано, с одной стороны, с простотой процесса и необходимого оборудования, а с другой стороны, с точностью разделения. [c.389]

    При экстракции в лабораторных масштабах можно выбирать между небольшим экстрактором непрерывного действия, в котором трудно достигается достаточно эффективный массообмен между фазами и который требует тщательной регулировки всех включенных потоков, и трудоемким методом последовательного тщательного смешетя и разделения в большом количестве делительных воронок. [c.389]

    В отличие от кислородсодержащих соединений нефти, которые представлены в основном кислотами и фенолами, легко удаляемыми из нефтяных фракций щелочью, удалить сернистые соединения очень сложно. Это связано с тем, что большинство сернистых соединений нейтральны и очень близки по снойствамк ароматическим соединениям нефти. Даже меркаптаны, имеющие слабокислые свойства, по мере увеличения молекулярной массы теряют эти свойства и их выделение из нефтяных фракций с помощью п1елочи становится нецелесообразным. Все существующие в лабораторной и промышленной практике химические и физико-химические методы разделения — такие, как сульфирование, адсорбционная хроматография, экстракция, разделение с помощью комплексообразова-ния и ректификация — оказываются малоэффективными и пока неприемлемы для промышленности. [c.199]

    Наиболее простым и доступным методом селективной очистки в лабораторных условиях является периодическая экстракция. Ее можно осуществлять однократной или многократной обработкой очищаемого продукта селективным растворителем (обводненным или сухим фенолом, фурфуролом и др.). В лабораторной практике также широко применяется противоточно-периодическая экстракция (псевдонротивоток), при которой создаются условия, близкие к условиям непрерывного процесса в противоточной экстракционной колонне. [c.183]

    Стадия выделения фуллеренов из фуллеренсодержащей сажи органическими растворителями является, по мнению авторов, наиболее ответственной на данном этапе получения фуллеренов, поскольку от полноты экстракции фуллеренов зависит количество полученного продукта на дальнейших стадиях. По этой причине, по-видимому, исследователями апробировано большое количество приемов экстракции фуллеренов. Используемые методы различаются применяемыми растворителями, временем экстракции, температурой процесса, а также лабораторными приспособлениями. [c.34]

    С4НвО)зРО — бесцветная маслянистая жидкость, т. кип. 289 С малорастворим в воде, хорощо — в органических растворителях получают взаимодействием нормального бутилового спирта с хлорокси-дом фосфора. Т. широко применяют в аналитической химии, радиохимии, при переработке ядерного топлива, для разделения элементов методом экстракции, в производстве пластмасс, в лабораторной практике и т. п. Из-за большой вязкости Т. для экстракции разбавляют бензолом, керосином и др. [c.253]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]


Смотреть страницы где упоминается термин Методы лабораторной экстракции: [c.404]    [c.18]    [c.24]    [c.502]    [c.259]    [c.16]    [c.37]    [c.267]   
Смотреть главы в:

Жидкостная экстракция -> Методы лабораторной экстракции




ПОИСК







© 2024 chem21.info Реклама на сайте