Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрокрекинг в две ступени

    Выход светлых нефтепродуктов на исходное сырье можно увеличить, если тяжелую часть гидрогенизата возвратить на повторный процесс или передать ее на II ступень гидрокрекинга (которая осуществляется в реакторе со стационарным слоем более активного расщепляющего катализатора). Описанная установка может быть использована и для переработки дистиллятного сырья — преимущественно тяжелых вакуумных газойлей, газойлей коксования п других дистиллятов, содержащих значительные примеси катализаторных ядов. [c.68]


    Результаты гидрокрекинга технического метилнафталина (н.к. 219 "С) на катализаторе гидрирующего типа (первой ступени гидрокрекинга)  [c.230]

    Недостатком процесса является короткий цикл (3 — 4 мес) рг боты секции гидрокрекинга (в то время как межрегенерационный пробег второй ступени составляет около 1 года) и большой выход газа — соотношение изокомпонент газ примерно равно 1 1. [c.232]

    Для гидрокрекинга наибольшее распространение получили алюмокобальтмолибденовые катализаторы, а также на первой ступени — оксиды или сульфиды никеля, кобальта, вольфрама и на второй ступени — цеолитсодержащие катализаторы с платиной. [c.47]

    Сырье до гидрокрекинга (П ступень) подвергается гидроочистке <1 ступень) высокий выход сероводорода н аммиака объясняется глубоким обессериванием деасфальтизата на стадии предварительной гидроочистки. [c.125]

    На второй ступени характер превращений дизельной фракции несколько меняется. Гидрирование ароматических соединений протекает практически с такой же глубиной и составляет 26%. Наибольшую конверсию претерпевают линейные парафиновые углеводороды - глубина ее составляет 76%. Реакция изомеризации является преобладающей. В продуктах расщепления большая доля принадлежит изопарафиновым угле водородам, что указывает на протекание реакции гидрокрекинга. Отсутствие в продуктах распада углеводородов С1—Сг и преобладание С3—С4 предполагает протекание реакций на катализаторе ГИ-13 по карбкатион-ному механизму. [c.127]

    В зависимости от типа сырья и целевых продуктов, используются одно- и двухступенчатый варианты процесса. Оптимальным вариантом для получения компонента автомобильного бензина является процесс двухступенчатого крекинга, где на первой ступени осуществляется гидроочистка и крекинг сырья, а на второй — собственно гидрокрекинг. Выходы бензиновых фракций в процессах одно- и двухступенчатого крекинга (бензиновый вариант) составляют 16 и 82,6% соответственно. Последний тип процесса обеспечивает 24,3%-ный выход легкого бензина с октановым числом 80,4 (ИМ) и 58,3%-ный — тяжелого с октановым числом 62,5 (ИМ) [158]. [c.174]

    Целью данной работы было исследование вопроса оптимизации кислотных свойств полиметаллического катализатора при использовании дифференцированного режима его хлорирования. Известно, что в каждой ступени риформинга осуществляется протекание определённых химических реакций. Так, в 1-ой ступени происходит, в основном, дегидрирование нафтеновых углеводородов, во 2-ой - изомеризация парафинов и дегидроизомеризация нафтенов, а также дегидроциклизация парафинов, заканчивающаяся в 3-ей ступени, где значительное развитие получают и реакции гидрокрекинга. [c.38]


    Процесс риформинга в целом эндотермичен суммарный перепад температуры в реакторах составляет от 50—70 °С на установках, работающих под давлением 2,5—3,5 МПа, до 160—200 °С на установках, работающих под давлением 0,8—1 МПа. Перепад температуры в первой ступени, где в основном протекают реакции дегидрирования нафтенов, составляет 50—70% суммарного перепада. В последней ступени риформинга вследствие развития реакций гидрокрекинга температурный перепад минимален а в некоторых случаях, на установках высокого давления илн при переработке сырья со значительным содержанием легких фракций, температура на выходе из реактора может на 2—10 С превышать температуру на входе. [c.134]

    Вследствие преимущественного протекания эндотермических реакций дегидрирования нафтеновых углеводородов в 1-ой ступени процесса и экзотермических реакций гидрокрекинга в последней, средние температуры в реакторах всегда повышаются от первого по ходу к последнему. Однако, при нисходящем температурном режиме в реакторах эта разница несколько нивелируется, и степень гидрогенолиза в последней ступени снижается. Таким образом, при сохранении одного и того же октанового числа увеличивается выход риформата. Кроме того, более равномерно закоксовывается катализатор в реакторах (при ровных температурах степень закоксовывания катализатора в реакторе последней ступени примерно в 4 раза выше, чем в реакторе 1-ой ступени). [c.40]

    ТАБЛИЦА 8. материальный БАЛАНС ДВУХСТУПЕНЧАТОГО ГИДРОКРЕКИНГА ВАКУУМНОГО ДИСТИЛЛЯТА ПРИ РАЗЛИЧНЫХ ВАРИАНТАХ РАБОТЫ УСТАНОВКИ (БЕЗ РЕЦИРКУЛЯЦИИ ОСТАТКА ВО П СТУПЕНИ) [c.63]

    Технологическая схема П ступени гидрокрекинга аналогична схеме I ступени. Стабильный катализат с низа колонны 27 смешивается с циркулирующим газом (от компрессора 22) и свежим водородом (от компрессора 21), проходит теплообменник 18, печь 16 и подается в реактор 17. Продукты реакции охлаждаются в теплообменнике 18, холодильниках 19 и 20. Сепараторы 23—26 работают соответственно под таким же давлением, как и сепараторы 1—4. Одинаковое давление (0,15 МПа) и в стабилизационных колоннах 27 и 28. [c.65]

    Технологическая схема П ступени завершается блоком ректификации для перегонки катализата из колонны 31 сверху уходят пары бензина, а из колонны 34 — пары дизельного топлива. В колонне 34 поддерживается вакуум. Остаток с низа этой колонны может возвращаться на рециркуляцию во И ступень гидрокрекинга, на прием насоса, или его выводят с установки и используют в качестве компонента малосернистого котельного топлива. [c.65]

    Увеличение числа установок гидрокрекинга и их суммарной мощности привлекли внимание исследователей к изучению физико-химических закономерностей процесса. Действительно, большинство реакционных устройств для проведения гидрокрекинга в одну или две ступени представляет собой многосекционные адиабатические аппараты с промежуточными вводами водород-содержащего газа. Определение оптимального распределения объемов катализатора по секциям, потоков сырья и водородсодержащего газа не может быть выполнено обычными методами физического моделирования и требует проведения точных количественных расчетов на основе изучения химизма процесса, его кинетических закономерностей, термодинамических параметров. [c.353]

    При риформинге фракции 62—180 °С под давлением 3 МПа до 70% ароматических углеводородов образуется в первом реакторе, что указывает на весьма важную роль первой ступени реакции в процессе (табл. 4.6). В мягких условиях (480 °С) дегидроциклизация парафинов происходит лишь при риформинге парафинового сырья. Однако при повышении температуры на входе 6 реакторы до 515 °С реакция дегидроциклизации протекает также при риформинге нафтенового сырья. Парафины подвергаются дегидроциклизации в каждом из трех реакторов. Удельный вес этих реакций особенно значителен во втором и третьем реакторах. Так, при риформинге парафинового сырья (515 °С) в двух последних реакторах из парафинов образуется свыше 60% ароматических углеводородов. Что касается гидрокрекинга углеводородов, то, как уже отмечено, реакция с наибольшей интенсивностью протекает в последнем реакторе. [c.125]

    Удаление серы из дистиллятного сырья представляло собой неизмеримо более легкую задачу, чем получение искусственного жидкого топлива из угля или смол. Естественно, что она могла быть решена применением простых и дешевых установок среднего давления в одну ступень и использовапием более дешевых и легко регенерируемых, хотя и менее активных катализаторов. Сначала гидроочистке подвергались более легкие дистилляты, затем все более тяжелые, включая газойли и смазочные масла. Было заманчиво при гидроочистке тяжелого сырья осуществить и его деструкцию. Так, с конца пятидесятых годов в опытных масштабах, а с начала шестидесятых — в промышленных масштабах стали развиваться процессы гидрокрекинга, имевшие целью повысить выход наиболее цев(ных нефтепродуктов — бензина и дизельного топлива, а также улучшить качество сырья для каталитического крекинга. Процессы гидрокрекинга не были возвратом к многоступенчатой технологии деструктивной гидрогенизации смол и углей, хотя и носили в себе основные черты последней. Видимо, поэтому к ним и применили новый термин — гидрокрекинг. В процессах деструктивной гидрогенизации разделение их на ступени и применение высоких давлений было вынужденной мерой, так как катализаторы были дороги, не регенерировались и были слишком чувствительны к ядам. В современных процессах гидрокрекинга применяются новые, более активные катализаторы, многие из которых могут регенерироваться. Процессы осуществляются максимум в две ступени и при меньшем давлении водорода. Многие из вновь разработанных катализаторов обладают [c.11]


    В настоящее время в СССР гидрокрекинг вакуумных дистиллятов под давлением 15 МПа наиболее целесообразен для получения реактивных, арктических зимних дизельных топлив и высокоиндексных масел. Процесс гидрокрекинга вакуумного дистиллята с концом кипения не больше 500 °С и общим содержанием металлов не более 1-2 млн 1 с целью получения реактивных и дизельных топлив ведут а одну ступень, используя несколько (до пяти) слоев различных катализаторов (рис. 7.9). [c.189]

    Разработан катализатор, особенно хорошо подходящий для удаления азота при гидроочистке или первой ступени гидрокрекинга. Из газойля с 0,319% азота стандартный алюмокобальтмолибденовый катализатор удалял 80% азота, новый — 92,5%. Новый катализатор стабилен и через 90 суток еще удалял 75% азота Предлагается процесс деметаллизации остаточных нефтепродуктов. При использовании бентонита степень деметаллизации составляет 88,6% [c.76]

    Гидроочисткой тяжелого вакуумного дистиллята в первой ступени и гидрокрекингом — во второй ступени можно получить 60% масел, в том числе высокоиндексных, и 40% топлив, в том числе 30% зимнего дизельного топлива, [c.82]

    Технологическая схема. Процессы гидрокрекинга и гидроизомеризации могут осуществляться в одну (рис. 2.66) или две ступени. [c.238]

    В последнее время за счет усовершенствования катализатора, а также оформлении процесса в виде 3 ступеней гидрокрекингу на стационарном катализаторе под давлением 15 МПа стало возможным подвергнуть любой нефтяной остаток. [c.195]

    Поскольку главная трудность при непосредственном гидрообессеривании или гидрокрекинге остатков - быстрая дезактивация катализатора, разрабатывается процесс и соответственно катализатор для деметаллизации сырья. Деметаллизацию на широкопористом катализаторе изучали для нефтяных остатков, содержащих 140-700 мл н 1. Выход катализатора составлял 94%, содержание металлов - 20 млн К При этом расход катализатора на ступени гидрообессеривания снижался в три раза. [c.203]

    Температурное поле процесса служит важной характеристикой работы реакционного блока, так как отражает кинетику протекания реакции на каждой ступени процесса (рис. 4.1). Наиболее резкое падение температуры в первом реакторе объясняется преимущественным протеканием в нем реакций дегидрирования нафтенов. Наименьший же перепад температур в последнем реакторе-— следствие значительного развития экзотермических реакций гидрокрекинга углеводородов. С увеличением содержания нафтенов з сырье возрастают температурные перепады в реакторах. [c.124]

    В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме с зотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие, как никель и ванадий. Поэтому гидрокрекинг с ырья, содержащего значительное количество гетеро- и металлор — ганических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и ]сеглубокий гидрокрекинг полициклических ароматических угле — 1юдородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени обла — гороженное сырье перерабатывают на катализаторе с высокой 1С.ИСЛОТНОЙ и умеренной гидрирующей активностями. [c.228]

    При переработке сырья с повышенным содержанием металлов процесс ЛГК проводят в одну или две ступени в многослойном реакторе с использованием трех типов катализаторов широкопо — ристого для гидродеметаллизации (Т — 13), с высокой гидрообессе — ркБающей активностью (ГО—116) и цеолитсодержащего для гидрокрекинга (ГК —35). В процессе ЛГК вакуумного газойля можно пс лучить до 60 % летнего дизельного топлива с содержанием серы 0,1 % и температурой застывания —15 °С (табл. 10.23). [c.238]

    Для систем НС Unibon разработана серия катализаторов DH -2, DH -6, НС-8, НС-100. Первые два рекомендуются для 1 первой ступени, последние два для II ступени гидрокрекинга [93]. [c.112]

    Характеристика сырья н. к. йЗв С, коксуемость 18,8 % (масс.), содержание азота 0,37 % (масс.), ванадия 100 мг/кг. Процесс осуществляется в барботажной трехфазиой леакторной системе. При наличии II ступени (гидроочистка газойля гидрокрекинга) можно получать продукт с низким содержанием серы остаток > 524 °С трудно поддается обессерыванию. [c.126]

    Ввиду того что гидрокрекингу обычно подвергают тяжелое сырье, содержащее сернистые, азотистые, а также металлорганиче-ские соединения, на I ступени процесса используют стойкие к отравлению серой катализаторы — алюмокобальтмолибденовые или алюмоникельмолибденовые. Освобожденное от катализаторных ядов сырье поступает на И ступень гидрокрекинга, где применяют активные гидрирующие и расщепляющие катализаторы, содержащие металлы VII и VIII групп, на активном оксидноалюминиевом носителе или цеолите. [c.62]

    Оппсана модификация процесса гидрокрекинга фирмы ВАЗ К (ВНС-УегГаЬгеп) применительно к различным видам сырья. Катализаторы не содержат благородных металлов. Дизельное топливо можно получать в одну ступень, бензин и реактивное топливо — лучше в две. При парциальном давлении водорода 110 кгс/см и циркуляции тяжелых фракций вакуум-дистилляты перерабатывали с объемной скоростью 0,35—1,1 4-1. Выход целевых продуктов 90,3% (ливийская нефть) и 94,1% (кувейтская). Цетановые числа дизельных топлив порядка 50, содержание серы не более 0,01%. (СМ.1 8, 316) [c.74]

    Показано, что гидрокрекинг арланского вакуумного дистиллята (3,4% серы) дает гидрогенизаты с содержанием серы 0,08—0,45%. Выход бензина 0,3—4,0%, дпзельйого топлива 28,5—56,1%, остатка 71,2—39,9%. Расход водорода 1 %. Катализатор служит 3 месяца без снижения активности. При опытном пробеге на промышленной установке выход остатка с 0,1% серы составил 55,9%. Для более глубокого расщепления нужны две ступени. Во второй ступени применяется катализатор N13 на алюмосиликате, удовлетворительно работающий при достижении в первой ступени содержания азота 0,01%. В бензиновом варианте выход бензина 55%, дизельного топлива 27,4%, остатка 9,0% в дизельнотопливном — соответственно 32,0, 51,0 и 10,2% [c.74]

    В промышленном масштабе осуществлено глубокое гидрирование бензола до циклогексана степень конверсии бензола 99%, чистота циклогексана 99,38% Осуществлено гидрирование нафталиновой фракции до тетралина и декалина. Степень конверсии 93—95% Сообщается о возможности пспользования процесса изомакс для переработки остатков Разработан процесс гидрокрекинга ВА8Р-1РР (фирма ВАЗР (см. ) и Французский Институт нефти]. Особенность процесса—возможность производить дизельное и печное топливо. В одноступенчатом процессе (или в первой ступени двухступенчатого варианта) в качестве катализатора применяются окислы N1 или Со и окислы Ш или Мо, нанесенные на кристаллические алюмосиликаты. Во второй ступени—платиновый или палладиевый катализаторы. Сырье для второй ступени должно содержать менее 0,001% азота п 0,1% серы. Дизельное топливо может быть получено из любого сырья, даже из деасфальтизата. В одном из опытов выходы в одноступенчатом процессе составили 2,8% + NHз, 1,02% С1-I- С , 3,79% С3+С4, 5,88% легкого бензина, 13,65% лигроина, 65,36% дизельного топлива, 10,0% печного топлива. В двухступенчатом варианте 2,75% + МИэ, 1,45% С1 + С , 12,20% С3 + С4, 22,0% легкого бензина (октановое число 82), 64,90% тяжелого бензина (октановое число 58) [c.75]

    При двухступенчатом гидрокрекинге вредное влияние остаточных азотистых соединений после первой ступени (при их содержании 0,0003—0,002 вес. %) можно компенсировать добавками галогенсодержащих соединений типа дихлорэтана, четыреххлористого углерода, mpem-бутилхлорида и других в количестве 10 — 300 атомов галогена на 1 атом азота. Отравление катализатора уменьшилось в 2,5 раза [c.78]

    Сравнивались катализаторы второй ступени двухступенчатого гидрокрекинга вакуумных дистиллятов в моторные тойлива. Испытаны железные, никелевые, платиновые, хромовые, молибденовые и другие окисные и сульфидные катализаторы на различных носителях. Лучшими оказались N1 и Р1 на алюмосиликатах, главным образом никель в частично осерненной форме. Определены нормы очистки сырья от азота в первой ступени эти нормы тем жестче, чем ниже давление водорода на второй ступени [c.81]

    Нечувствительный к сере и азоту (I) расщепляющий (И) Описаны два варианта гидрокрекинга тяжелых дистиллятов коксования и каталитического крекинга по обычной двухступенчатой и совмещенной схеме, в которой гидрогенизат первой ступени подается на вторую без разделения продуктов. Выход дизельных тонлив от 74,5 до 83,5%. Содержание серы снижается с 2,39 до 0,01% 399 [c.86]

    Второе место (после гидроочистки) занимают процессы, в которых осуществляется более или менее глубокая деструкция сырья, — процессы гидрокрекинга. Они также представлены большим числом фирменных модификаций, но практически могут быть разделены на две группы одно- и двухступенчатые процессы. В первых используется относительно легкорасщепляемое сырье, а целевыми продуктами являются более тяжелые дистилляты, например дизельное топливо, во вторых — стадии насыщения сырья (гидрирование) и расщепления разделены. Подготовка сырья в первой ступени позволяет применять во второй ступени более активные расщепляющие катализаторы, вследствие чего двухступенчатые схемы более гибки, позволяют перерабатывать неблагоприятное сырье и получать бензин и другие низкокипящие товарные продукты. Данные табл. 4 иллюстрируют важные тенденции в эволюции процессов гидрокрекинга гидрокрекинг, появившийся сначала как вспомогательный процесс бензинообразования и призванный дополнять каталитический крекинг, становится универсалькее и приспосабливается к переработке все более тяжелого [c.94]

    Итак, поскольку алюмосиликаты и цеолиты обладают кислотными участками структуры, их участие в ускорении ионных реакций понять легко. Однако явление взаимосвязи кислотности катализатора с его способностью ускорять ионные реакции в ходе процессов гидрогенизации много сложнее. Нужно принять во внимание, во-первых, что некоторые катализаторы, достаточно хорошо ускоряющие ионные реакции изомеризации и расщепления, не содержат в своем составе алюмосиликатов или цеолитов (например, WS2, МоЗа и др.). Во-вторых, как отмечалось уже на ранних ступенях разработки катализаторов гидрокрекинга активные катализаторы должны обладать не только кислотной, но и гидрирующей активностями, т. е. обе активности должны быть выше определенного критического уровня. Весьма активные алюмосиликаты, использованные в качестве носителей, давали недостаточно активные катализаторы гидрокрекинга (Р1 на А12О3 4- ЗЮз) при малых содержаниях платины с увеличением содержания платины их активность росла, но только до определенного предела. [c.125]

    Технологический режим. Основные технологические параметры риформинга — объемная скорость подачи сырья, давленпе, кратность циркуляции водородсодержащего газа, максимальная температура процесса, а для установок с движущимся слоем катализатора — производительность узла регенерации, выбираются при проектировании установок. Объемная скорость подачи сырья составляет 1,5—2 ч- . Частные объемные скорости по ступеням реакции, число ступеней (обычно в пределах 3—5) выбираются с учетом качества сырья и требований к качеству катализата. Для современных установок характерно неравномерное распределение катализатора по реакторам. Для трехреакторного блока распределение катализатора составляет от 1 2 4 до 1 3 7, для четырехреакторного она может быть, например, 1 1,5 2 5 5. Снижение скорости подачи сырья приводит к уменьшению селективности процесса, понижению выхода катализата н водорода, повышению выхода углеводородно/о газа, снижению концентрации водорода в циркуляционном газе. Снижение рабочего давления риформинга повышает селективность процесса (рис. 2.2.3), способствуя реакциям ароматизации п. подавляя гидрокрекинг. Однако при снижении давления увеличивается скорость дезактивации катализатора за счет накопления на нем кокса (рис, 2,24, а). Первые промышленные установки каталитического риформинга были рассчитаны на рабочее давление 3,5—4 МПа. Применение стабильных полиметаллических катализаторов позволило снизить давление до 1,5—2 МПа на вновь проектируемых установках с неподвижным слоем катализатора и до 0,7—1,2 МПа на установках с движущимся катализатором. На действующих установках риформиига замена алюмоплатиновых катализаторов на полиметаллические позволяет снизить рабочее давление с 3,0— [c.132]

    Существуют три типа комбинированных процессов. В первом варианте сырье каталитического риформинга подвергают предварительной гидроочистке и легкому гидрокрекингу с целью получения легкокипящих изопарафиновых компонентов /-С4 и С . Остаток гидрокрекинга в количестве 70-85% направляется на вторую ступень- пластформинг для повышения октанового числа. В качестве катализатора первой ступени используется цеолитсодержащий катализатор, промотированный оксидами молибдена и никеля, на вто[ЮЙ ступени - полиметаллический катализатор риформинга. ВСГ, получаемый на стадии риформинга, поступает на блок предварительной гидроочистки-гидрокрекинга. Во избежание коксования цеолита кратность циркуляции и давление ВСГ должны быть выше, чем на блоке риформинга. Кроме того, объемная скорость на первом блоке не [c.163]

    Недостатком процесса изориформинга является короткий цикл работы (3- 4 мес.) первой ступени процесса - гидрокрекинга, по-видимому, из-за закоксовывания цеолита, в то время как межрегенерационный пробег второй ступени процесса риформинга составляет около года. Поэтому до отработки первой ступени стадии гидрокрекинга и риформинга следует проводить отдельно. [c.187]

    В связи с дизелизацией моторного парка установки обессеркваьшя вакуумного дистиллята с к.к, 540 °С целесообразно перевести на режим легкого гидрокрекинга с получением до 60% ДТ за ггроход за счет усовершенствования предварительного сульфидирования катализатора ВСГ с высокими содержанием НгЗ, увеличения давления и кратности циркуляции ВСГ, усовершенствования устройств для предотвращения коксообразования вверху первого по ходу реактора, равномерности распределения сырья и ВСГ по сечению и высоте реакторов. При переработке мазутов и гудронов с содержанием металлов 100 млн и более следует использовать систему с подвижным широкопористым шариковым катализатором для деметаллизации и деасфальтизации в первой ступени и со стационарным катализатором-во второй и третьей ступенях при 2-3 МПа в сочетании с непрерывной регенерацией катализатора деметаллизации и деасфальтиза-дии. [c.204]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    Технологическая схема установка двухступенчатого гидрокрекинга (рис. 2ЛЗ). Смесь сырья с водородсодержащим газом нагревается в теплообменниках и печи, а затем проходит через реактор первой ступени Р-1, заполненный алюмо-кобальт-модибденовым катализатором. В Р-1 происходит удаление из сырья серы и азота, а также частичный крекинг сырья. Продукты реакции охлаждаются в теплообменниках и холодильниках, а затем поступают в сепаратор высокого давления С-1, [c.73]


Смотреть страницы где упоминается термин Гидрокрекинг в две ступени: [c.47]    [c.95]    [c.39]    [c.71]    [c.319]    [c.22]    [c.196]    [c.70]   
Смотреть главы в:

Получение реактивных топлив с применением гидрогенизационных процессов -> Гидрокрекинг в две ступени




ПОИСК





Смотрите так же термины и статьи:

Гидрокрекинг

Гидрокрекинг в одну ступень

Ступень

Ступень ступени

Титушкин В. А. Гидрокрекинг фракций сырого бензола в две ступени

Хавкин, Л. Н. Осипов, Р. А. Хмельницкий, А. А. Полякова, Рогов, А. В. Агафонов. Химизм и кинетика гидрокрекинга нефтяного сырья во второй ступени



© 2025 chem21.info Реклама на сайте