Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О стереохимии карбонильных реакций

    Стереохимия карбонильных реакций производных циклогексанона [c.382]

    В гл. 7 при описании присоединения аниона по карбонильной двойной связи было рассмотрено взаимодействие ВЗМО аниона с НСМО (тг ) карбонильной связи. Аналогично было описано присоединение катиона к олефиновой двойной связи как взаимодействие НСМО катиона с ВЗМО (тг) двойной связи. В простых реакциях присоединения этого типа затрагиваются одновременно три атомных центра. В этой главе будут рассмотрены процессы, представляющие собой согласованные реакции с циклическим переходным состоянием. Наиболее известным примером является реакция Дильса-Альдера одно время ее называли реакцией без механизма , однако Вудвард и Гофман показали, что стереохимию таких реакций можно выяснить, если рассмотреть взаимодействие между граничными орбиталями. Так, на рис. 12.1 изображено взаимодействие этена и бутадиена. [c.109]


    Карбанионы могут участвовать в большом числе реакций. В конкретных условиях реакционная способность карбанионов зависит от степени делокализации отрицательного заряда. В случае карбанионов с высокой степенью делокализации заряда реакция может происходить у любого из центров, между которыми формально распределен отрицательный заряд. Так, карбанионы, стабилизированные карбонильной группой (енолят-ионы), могут реагировать как по углеродному атому, так и по атому кислорода в зависимости от природы реагирующих веществ и условий про-, ведения реакции. Реакционная способность карбанионов существенно зависит также от степени ассоциации ионов. Свободные карбанионы и ионные пары часто различаются по реакционной способности, а также по направлению протекания реакции, селективности и стереохимии. Укажем некоторые типы реакций с участием карбанионов, которые применяются в промышленном органическом синтезе  [c.398]

    Образующиеся в результате 1,3-диполярного циклоприсоединения аддукты сохраняют стереохимию исходных диполярофилов (рис. 4.23, б) (обычно так и происходит, но сколько исключений из каждого правила ) [84]. Это убедительно доказывает согласованный механизм процесса. Аналогично при циклоприсоединении сохраняется стереохимия 1,3-диполярных соединений (рис. 4.23, в). Однако для некоторых диполей, например, для азометиновых и карбонильных илидов, возможна 1 ис-/пра с-изомеризация в условиях циклоприсоединения. Стереоселективность — существенное достоинство синтетических методов, основанных на реакциях 1,3-диполярного циклоприсоединения. [c.117]

    В старой химической литературе имеется обзор [37], посвященный препаративным возможностям реакции Реформатского, но без рассмотрения ее стереохимии. Формально реакцию Реформатского можно сравнить с реакцией Гриньяра, в которой цинкорганиче-ский реагент, полученный из а-галогеноэфира, заменяет реактив Гриньяра. В обеих реакциях возникает новый хира.льный центр, если В-группы различны, как показано на рис. 4-5. Два различных пути могут приводить к асимметрическому синтезу. Если карбонильное соединение хирально, то будет происходить асимметрический синтез того типа, который подчиняется правилу Крама. Хотя имеется ряд отдельных примеров таких случаев, систематических исследований в этом направлении проведено не было (реактив Реформатского не приведен в табл. 3-1—3-7). Если реактив Реформатского хирален, то будет происходить асимметрический синтез с образованием нового хирального центра большинство примеров относится к реакциям, в которых в сложном эфире имеется хиральный спиртовый остаток. Хотя реакции Гриньяра и Реформатского формально, по-видимому, сходны, в реактиве Гриньяра имеется истинная металлоорганическая связь, тогда [c.178]


    В этой реакции, родственной реакции Виттига, вместо илидов фосфора используются фосфонатные карбанионы [489]. Эта реакция обладает следующими преимуществами во-первых, фосфонатный карбанион более нуклеофилен и реагирует в мягких условиях с самыми разнообразными альдегидами и кетона-ми во-вторых, растворимость фосфонатов в воде облегчает выделение продуктов реакции из реакционной смеси при обработке в-третьих, фосфонаты, которые получают по реакции Арбузова, дешевле и более доступны. Обычные фосфонаты, с успехом используемые в реакции Хорнера, включают заместитель К , резонансно стабилизирующий карбанион. Если Кз = Н или алкил, то олефины образуются с низким выходом. С точки зрения стереохимии образованию гранс-олефинов благоприятствуют небольшие заместители у а-углерода фосфоната. Стерические затруднения как в фосфонате, так и в карбонильном реактанте способствуют промежуточному образованию бетаина, что приводит к чис-олефинам [490, 491]. [c.257]

    Действительно, илиды, содержащие стабилизирующие группы или полученные из триалкилфосфинов, как правило, дают транс-олефины [513], а илиды, полученные из трпарплфосфинов и не содержащие стабилизирующих групп, часто приводят к цис-олефину или к смеси цис- и трамс-олефинов [513]. Одно из объяснений этого явления [506] основывается на упоминавшемся выше предположении, что в таких случаях стадии 1 и 2 механизма осуществляются одновременно. Если это так, то реакция илида с карбонильным соединением представляет собой [2+2]-циклоприсоединение, которое, для того чтобы быть согласованным, должно следовать [ 25-4-п2а]-пути. Как уже рассматривалось при описании реакции 15-48, такой механизм приводит к образованию стерически более затрудненного продукта, в данном случае ц с-олефина. Объяснить образование ч с-олефинов и смесей цис- и граис-изомеров даже в реакциях, протекающих через образование в качестве интермедиата бетаина, можно, если предположить, что в таких реакциях стадия 1 необратима. При этом конфигурация получающегося диастереомера определяется взаимным расположением илида и карбонильного соединения перед реакцией. После образования бетаина стереохимия олефина определяется лишь тем фактом, что элиминирование— это с н-процесс. Две обсуждающиеся возможности можно проиллюстрировать следующей схемой  [c.404]

    Замечательно, что в этом синтезе все структурные элементы и функциональные группы трансформируемых молекул включаются в работу и начинают играть активную роль как по команде, в нужный момент и в нужно.ч месте, оставаясь до этого инертными. Так, например, метоксильная группа исходного хинона 8 необходима для обеспечения региоселективности реакции Дильса—Альдера. В то же время она служит замаскированной формой карбонильной группы, освободить которую от защиты предстоит только на более поздних стадиях. Двойная связь в цикле В появляется уже на первой стадии синтсза и сохраняется незатронутой вплоть до десятой стадии, где она играет ключевую роль в работе по построению пятич тснного цикла О, Двойные связи в циклах С и В появляются как побочные продукты циклизации, требующие удаления в дальнейшем. Однако это кажущееся осложнение на самом деле оказывается существенным конструтсгивным элементо.м всей схемы, поскольку стереоспецифическое каталитическое гидрирование этих двойных связей позволяет решить стратегическую задачу создания необходимой стереохимии сочленения циклов. [c.293]

    Главной особенностью двойных связей в олефинах или карбонильных соединениях является их способность вступать в реакции присоединения. Возможно линейное присоединение трех типов (циклоприсоединение обсуждается ниже), в которых атакующим реагентом служит или НСМО-ген (катионный), или ОЗМО-ген (радикальный), или ВЗМО-ген (анионный). Пиктографическая орбитальная теория объясняет ориентацию, относительную скорость (в тех случаях, когда ее можно применить) и стереохимию всех трех типов реакций присоединения. [c.71]

    В препаративном отношении наиболее важное значение алкили-денфосфораноп, несомпенно, имеет их реакция с карбонильными соединениями, приводящая к образованию олефинов. В следующем разделе обсуждаются механизм и стереохимия ренкции Виттига. [c.317]

    На рис. 7-11 показана стереохимия реакций и, кроме того, приведен перечень кетонов, принимающих участие в реакции, и продуктов реакции. Эти ферменты могут быть разделены на две группы в зависимости от того, с какой стороны карбонильной группы происходит атака енолят-анионом. Обычная цитрат-синтетаза из тканей животных конденсируется с st-стороной и обозначается как цитрат (si)-синтетаза. В то же время в некоторых анаэробных бактериях содержится цитрат (ге)-син-тетаза, проявляющая противоположную стереоспецифичность [152, 153]. [c.168]

    Рассмотрим сначала поведение кетонов по отношению к галогенам и данные, подтверждающие реальность существования карбанионов. Это даст нам возможность познакомиться с очень элегантным примером применения кинетики, стереохимии и изотопов для изучения механизма реакций. Кроме того, мы получим также некоторое представление о роли кето-енольной таутомерии в химии карбонильных соединений. [c.812]


    Полное обсуждение стереохимии присоединения литийорганических соединений к карбонильным группам выходит за пределы данной книги по этому вопросу имеется хороший обзор [17]. Тем не менее следует упомянуть асимметрический синтез через присоединения ахиральных карбонильных соединений в присутствии хиральных хелатообразующих лигандов. Приведенный ниже пример успешного проведения реакции этого типа описан в Organi Syntheses [18]  [c.73]

    Карбанионы, образующиеся в реакциях присоединения по Михаэлю, отличаются от ионов реактанта, поэтому трактовка результатов здесь значительно сложнее, чем в случае полимеризации. Стереохимия реакции обычно определяется протонированием образующегося карбаниона и поэтому зависит от различных факторов, обсуждавшихся выше. Во многих случаях анион, образующийся при присоединениях по Михаэлю, стабилизуется заместителями, содержащими карбонильную группу. Тогда протонированне может быстрее всего протекать по атому кислорода и стереохимия нейтрального продукта реакции Михаэля будет обусловлена термо- [c.560]

    Наблюдаемые сдвиги атомов водорода в действительности представляют собой реакции внутримолекулярного или даже межмолекулярного отщепления. Внутримолекулярное отщепление может протекать только при определенном расстоянии между реагирующими центрами [44] и может иметь значение, если взаимная пространственная близость таких центров обеспечивается достаточно жесткой стереохимией соединений. Это положение иллюстрируется многочисленными вариантами реакции Бартона [45]. Отщепление водорода обычно протекает через шестицентровое циклическое переходное состояние. В силу этого алкоксильные радикалы, генерируемые из соответствующих гипохлоритов, превращаются в 8-хлорзамещенные спирты и карбонильные соединения последние образуются за счет параллельно протекающего Р-распада [46]  [c.22]

    Возможность более широкого использования химических методов для исследования структуры моносахаридов и развитие новых интересных подходов целиком определяются достижениями химии моносахаридов в целом. Центральной проблемой здесь является детальное изучение реак- ционной способности отдельных функциональных групп в молекуле моносахарида и влияния на нее особенностей структуры. Речь идет об исследовании реакционной способности карбонильной группы, гликозидного гидроксила и спиртовых групп и влияния на реакционную способность различных изменений в строении молекулы (замещение соседних групп, изменение стереохимии тех или иных асимметрических центров и конформации всей молекулы в целом и т. д.). Подобных работ в химии сахаров пока явно недостаточно. По-видимому, наиболее разработанными примерами такого рода являются исследования механизма окисления альдоз бромом и реакций замещения у гликозидного центра. Эти исследования не только позволили сделать важные теоретические выводы, но и способствовали разработке новых синтетических методов. Между тем аналогичные работы по реакционной способности спиртовых групп моносахарида, аминогрупп в аминосахарах, карбоксильных групп в уроновых кислотах почти отсутствуют, и все заключения здесь носят обычно качественный характер, как, например, суждения о различиях в реакционной способности первичных и вторичных гидроксильных групп моносахарида. [c.628]

    Открытие реакции Виттига в 1953 г. [12Ь] (принесшее ее автору Нобелевскую премию) и последующие разработки ряда модификаций этого метода [12с] существенно расширили арсенал органического синтеза, снабдив синтетиков чрезвычайно мощным инструментом для синтеза олефинов со строго определенным расположением и стереохимией образующейся двойной связи. Благодаря этому стадия разборки двойной связи с выходом к паре предшественников — алкилгалогенид и карбонильное производное (ретрореакция Виттига) — является в настоящее время одним из наиболее надежных приемов ретросинтетического анализа самых разнообразных соединений. [c.112]

    Важным аспектом реакции является ее стереохимия. При действии гидридов на открытоцешше карбонильные соединения намечается некоторая избирательность, которая приводит, правда, к незначительному преобладанию одного из изомеров в продуктах реакции. Согласно правилу Крама, преимущественной конформацией карбонильного соединения, содержащего в .-положении асимметрический углеродный атом, является заслоненная,с карбонильной группой, расположенной между наибольшим (Б) и средним (С) по размерам заместителями  [c.110]

    Альдольная конденсация (118], т. е. присоединение енола или енолят-аниона к карбонильной группе альдегида или кетона, детально обсуждалась для алифатических альдегидов в разд. 5.1.5.2. Поэтому в данном разделе будут упомянуты лишь факторы, специфичные для ароматических альдегидов. В случае алифатических альдегидов обычно удается выделить продукт конденсации альдольного типа, тогда как с ароматическими альдегидами в норме происходит дегидратация в а,р-непредельное карбонильное соединение, если применяется избыток основного или кислотного катализатора. Однако недавно несколько групп исследователей разработали методы генерирования енолов и енолят-анионов в отсутствие избытка основания [119—123]. Последующая конденсация с ароматическими альдегидами протекает с образованием альдольного продукта с хорошим выходом, тогда как прежде из-за побочных реакций самоконденсации (для енола) и полиаль-дольной конденсации образовывались сложные смеси продуктов, особенно с алифатическими субстратами. При использовании предварительно приготовленных енолятов и низких температур было обнаружено, что альдольные конденсации проявляют высокую стереоселективность, если присутствуют объемистые заместители [схема (57)], однако с небольшими группами селективность уменьшается или вообще исчезает [122]. Высокую селективность можно объяснить образованием переходного состояния (29), в котором два кислородных атома карбонильных компонентов образуют хелат с катионом металла. В поддержку этого предположения говорит наблюдение, что при отсутствии у катиона хелатообразующей способности, например при использовании К4М+, продукты имеют противоположную стереохимию [уравнение (58)] в этом случае, вероятно, образуется переходное состояние (30), в котором электростатическое отталкивание сведено к минимуму [122]. [c.724]

    Реакция а-галогензамещенного сложного эфира или а-галогенкетона с кетоном или ароматическим альдегидом в присутствии сильного основания известна как конденсация Дарзана [132]. Образующееся в результате а,р-эпоксикарбонильное соединение получается за счет замыкания цикла в промежуточном продукте альдольной конденсации схема (67) [133]. Стереохимия конечного продукта зависит от относительных скоростей альдольной конденсации и стадии замыкания цикла. Если последняя протекает более медленно, между альдольными интермедиатами устанавливается равновесие, что приводит только к продукту с карбонильной функцией в гране-положении к наибольшему р-заме-стителю см. схему (67) [134], Факторы, замедляющие альдоль- [c.728]

    Стереохимия восстановления замещенных циклогексанонов была использована в качестве теста при исследовании механизмов восстановления гидридами металлов, однако при этом возникло много осложнений. При восстановлении тетрагидроборатом натрия пространственно незатрудненных циклогексанонов в основном протекает аксиальная атака реагентом и образуется до 95 % экваториального спирта. Стереоизбирательность реакции заметно снижается с увеличением пространственных затруднений у карбонильной группы более того, селективность может даже стать обратной в случае сильно пространственно затрудненных циклогексанонов [212]. Несмотря на различные объяснения этого удивительного и чрезвычайно полезного явления, истинная его природа не установлена [212, 213]. Концепции стерического контроля и контроля образованием конечных продуктов [214] (раннее или позднее переходное состояние) подверглись серьезной критике [215]. Приводились и другие объяснения этого явления, такие как торсионное напряжение [216], орбитальный контроль [217], неравномерное распределение электронной плотности у карбонильной группы [218, 219]. Для понимания необходимо знать специфические активационные параметры аксиальной и экваториаль ной атаки с тем, чтобы детально оценить различные переходные состояния. С этой целью недавно исследовано [212] восстановление 19 циклогексанонов тетрагидроборатрм натрия в пропаноле-2 в интервале температур от О до 35°С, определены константы [c.327]

    Пока известен только один пример переноса алкильной группы от тетраалкил бората к карбонильной группе. 4-трет-Бутил-циклогексанон медленно реагирует с избытком (5 моль-экв) тетраметилбората (три дня в кипящем бензоле), дав ая продукт присоединения с выходом 48 % [29]. Стереохимия реакции та же, что и в случае других ат-комплексов, но бораты наименее реакционноспособны из всех изученных комплексов. Реакция с ацилхлоридами схема (12) идет гладко и приводит к кетонам без примеси третичного спирта [30, 31], поскольку бораты инертны по отношению к кетонам. [c.478]

    Комплексы 9-борабицикло [3.3,1] нонана (9-ББН) восстанавлива- ют третичные и аллильные хлориды и бромидьь Соединение (3) инертно по отношению к этил- и егор-алкилгалогенидам, но восстанавливает 1,2-дибромстиррл до 1-бром-2-фенилэтана с выходом 60%. Этот ат-комплекс селективно восстанавливает также альдегиды и кетоны. Альдегиды восстанавливаются в присутствии кетонов, а в дикетонах можно восстановить пространственно менее затрудненную карбонильную группу. Стереохимию восстановления циклических кетоноа можно контролировать, проводя реакцию в метаноле или в метаноле с добавкой метилата лития, Показано, [c.479]


Смотреть страницы где упоминается термин О стереохимии карбонильных реакций: [c.330]    [c.356]    [c.145]    [c.125]    [c.430]    [c.112]    [c.127]    [c.160]    [c.1300]    [c.61]    [c.557]    [c.127]    [c.160]    [c.73]    [c.408]    [c.673]    [c.700]    [c.664]    [c.316]    [c.318]   
Смотреть главы в:

Введение в электронную теорию органических реакций -> О стереохимии карбонильных реакций




ПОИСК





Смотрите так же термины и статьи:

Асимметрическая индукция и стереохимия реакций карбонильных соединений

Карбонильные соединения стереохимия реакций присоединения

Стереохимия

реакции стереохимия



© 2024 chem21.info Реклама на сайте