Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Качественный анализ и идентификация веществ

    Аналитическая химия - наука о принципах и методах определения химического состава вещества и его структуры. Включает качественный и количественный анализы. Задача качественного анализа -обнаружение отдельных компонентов (элементов, ионов, соединений) анализируемого образца и идентификация соединений. Задача количественного анализа - определение количеств (концентрации или массы) компонентов. Некоторые современные методы анализа (например, эмиссионная спектроскопия) позволяют сразу получить информацию и о качественном составе образца и о количественном содержании отде компонентов. [c.10]


    В качественном анализе органических веществ применяют реактивы, которые дают возможность идентифицировать определенные функциональные группы или получать производные изучаемых веществ с хорошо изученными свойствами. Особый интерес представляют цветные реакции, дающие возможность достаточно быстро идентифицировать вещество, а измерив оптическую плотность раствора продукта реакции, и определить его количество. Для идентификации и особенно проверки чистоты органического вещества обязательно определение физических констант— температуры плавления (или разложения, если вещество неустойчиво при нагревании) или при идентификации жидких веществ — плотности, температур кипения и замерзания, показателя преломления. При исследовании органических веществ особое значение приобрели хроматографические методы. [c.805]

    В поляриметрии возможны качественный анализ (идентификация вещества по удельному или молярному вращению) и количественный анализ (определение концентрации растворенного вещества). Угол вращения плоскости поляризации света при прохождении его через анализируемый раствор измеряют на поляриметре. [c.224]

    Качественный анализ, идентификация веществ. По- [c.479]

    В настоящее время газовая хроматография является не только методом количественного анализа веществ, но и наиболее удобным методом их качественного анализа — идентификации веществ. [c.173]

    Идентификация углеводородов по инфракрасным спектрам обычно вполне однозначна, поскольку не может быть двух различных молекул (за исключением оптических изомеров) с совершенно одинаковыми спектрами. Спектральная идентификация значительно надежнее идентификации по таким константам, как температура кипения, плотность и показатель преломления обычно она надежна и при наличии значительных примесей в идентифицируемом веществе. Возможна идентификация нескольких компонентов в смеси (качественный анализ), а в ряде случаев идентификация соединений с неизвестным спектром в процессе их получения [3, 14]. [c.498]

    Получение информации об элементном составе, структуре и энергии связей сложных органических соединений. Количественный и качественный анализ смесей веществ с давлением пара 1 Па при 300— 350 С. Идентификация органических соединений и фракций, разделенных газожидкостным хроматографом [c.267]


    Идентификация соединений и качественный анализ стабильных продуктов химических реакций. При исследовании механизма химической реакции очень важно знать, какие вещества и в каких соотношениях образовались в результате реакции это дает ценную информацию о возможных путях протекания процесса, а также о промежуточных веществах. В этом отношении ИК-спектроскопия дополняет другие методы исследования. Особенно большую ценность представляет метод ИК-спектроскопии для обнаружения и идентификации различных веществ. Так, многие вещества (предельные углеводороды, олефины с несопряженной двойной связью) не поглощают в видимой и УФ-областях спектра, но дают характерные ИК-спектры. [c.211]

    На координатных осях можно откладывать не только молекулярные аддитивные константы, но и любые другие физические свойства, например показатель преломления и плотность, показатель преломления и температуру кипения и т. д. В таком случае гомологическим рядам будут соответствовать уже не параллельные прямые, а более или менее широкие и искривленные полосы. Подобные диаграммы свойство — свойство могут быть весьма полезны при качественном анализе органических веществ для установления принадлежности исследуемого соединения к тому или иному гомологическому ряду, для определения положения (места) этого соединения в данном гомологическом ряду и его идентификации. В принципе для этого достаточно измерить показатель преломления и какое-либо другое физическое свойство и с помощью соответствующей диаграммы с нанесенными на нее линиями гомологических рядов определить, какой линии или полосе отвечают константы анализируемого соединения. [c.109]

    Возможность использования спектроскопических методов для качественного и количественного анализа, идентификации веществ, исследования строения и состава комплексных соединений, кинетики реакций и химических равновесий обеспечила широкую распространенность этих методов в исследовательских и заводских лабораториях. Применяемая в современных приборах электрическая регистрация спектров поглощения открывает пути к широкому внедрению спектроскопии в качестве средства автоматического контроля и регулирования производственных процессов. [c.3]

    Наиболее удобный метод полного качественного анализа неизвестного вещества состоит в одновременном рассмотрении его полного спектра и спектра атласа, в поиске и идентификации обнаруженных элементов путем регистрации найденных аналитических линий. Качественный анализ облегчается, если оценивать интенсивности аналитических линий с помощью произвольной шкалы или классификации (линии отмечены, например, крестиками или точками), поскольку в этом случае по оцененным величинам отношения почернений спектральных линий можно более надежно идентифицировать различные линии одних и тех же элементов, а на основании опытов с подобными материалами можно устанавливать приближенные содержания элементов. [c.26]

    Спектры поглощения вещества в видимой, УФ- и ИК-обла-стях спектра являются индивидуальной характеристикой данного вещества и служат основой для качественного анализа (идентификации) индивидуальных соединений в их смесях с другими веществами. [c.252]

    Масс-спектрометрия длительное время развивалась как метод количественного анализа многокомпонентных смесей и лишь п последние годы нашла применение для идентификации и качественного анализа неизвестных соединений. В этом случае масс-спектрометрия часто используется в сочетании с другими методами, обеспечивающими либо выделение индивидуального соединения из смеси, либо упрощение ее состава. За редким исключением, еще до проведения масс-спектрометрического анализа исследователь обладает определенной информацией об идентифицируемом соединении (физических константах вещества, его стабильности и путях синтеза). Эти сведения определяют принципиальные возможности анализа и метод введения вещества в масс-спектрометр. [c.116]

    Методы идентификации полос в спектрах зависят от решаемой задачи. Наиболее обычной задачей молекулярного качественного анализа является установление строения вещества. Ее приходится решать при синтезе новых соединений или выделении из их природных продуктов. Определение молекулярной структуры неорганических веществ в большинстве случаев довольно просто. Сделав элементарный качественный и количественный анализ вещества и зная его химические свойства, можно сразу написать его структурную формулу. [c.324]

    Методика качественного анализа. В большинстве случаев хроматограмма на бумаге оказывается бесцветной. Поэтому она нуждается в проявлении растворами веществ, образующих с компонентами анализируемой смеси окрашенные соединения. По окраске пятен производят качественное определение анализируемой смеси. Если проявитель со всеми веществами разделенной смеси дает одинаковое окрашивание, то идентификацию отдельных веществ производят по полол<ению зоны данного вещества, т. е. находят и сравнивают его с табличными данными. [c.222]


    Качественный и количественный анализ. Методика качественного анализа. Так как в большинстве случаев хроматограмма на бумаге после разделения смеси веществ и испарения подвижной фазы бесцветна, то на основании ее нельзя не только идентифицировать вещества, но и судить о степени разделения их смеси. Поэтому полученные хроматограммы следует проявить. Для этого применяют растворы различных веществ, при взаимодействии которых с компонентами анализируемой смеси образуются окрашенные соединения. В проявленной хроматограмме по окраске пятна, образованного тем или иным веществом смеси и проявителем, можно идентифицировать вещество. Если проявитель образует со всеми веществами разделяемой смеси одинаково окрашенные пятна, то идентификацию проводят по месту расположения пятна на бумаге. Каче- [c.122]

    Этот метод, открытый в 1903 г. русским ученым-ботани-ком М. С. Цветом, позволяет решать следующие задачи 1) качественный и количественный анализ сложных органических смесей 2) очистку веществ от примесей 3) установление индивидуальности вещества 4) идентификацию веществ 5) концентрирование вещества и выделение его из разбавленных растворов или смесей. [c.148]

    Отметим попутно, что рентгенограмма, полученная по методу порошка, в принципе содержит полный дифракционный спектр кристалла, поскольку в образце присутствуют зерна всех возможных ориентаций. Поэтому дебаеграмма может служить рентгеновским паспортом любого индивидуального кристаллического соединения, и метод порошка широко используется для идентификации веществ, для качественного и количественного определения фазового состава смесей и других задач рентгенофазового анализа. Однако в структурном анализе этот метод имеет очень ограниченное применение. [c.56]

    Качественный хроматографический анализ, т. е. идентификация вещества по его хроматограмме, может быть выполнен сравнением хроматофафических характеристик, чаще всего объемов удерживания, найденных при определенных условиях для компонентов анализируемой смеси и для эталона. [c.293]

    Когда в образце (в молекуле) имеются атомы разных элементов, спектр представляет суперпозицию спектров элементов, т. е. аддитивен. Кроме того, для атомов одного и того же элемента их спектр зависит от окружения, т. е. сигналы претерпевают химический сдвиг. По этой причине спектр остовных электронов может служить как отпечаток для идентификации чистых веществ и качественного анализа смесей, т. е. идентификации компонентов, при использовании поисковых систем и сопоставлении с уже известными спектрами. [c.152]

    Удерживаемый объем Уг и время удерживания 1г, как уже сказано ранее, являются качественными характеристиками хроматографируемых веществ в определенных условиях проведения опыта. Качественный анализ основан на измерении этих величин. Существует несколько способов идентификации компонентов в сложной смеси. [c.117]

    При наличии литературных данных по индексам удерживания можно проводить качественный анализ без применения индивидуальных веществ. Определяя индексы удерживания вещества, надо исключить адсорбционное влияние твердого носителя. Это влияние особенно велико при хроматографировании полярных веществ на неполярных жидких фазах (образование хвостов, изменение порядка выхода компонентов, изменение времени удерживания). Поэтому необходимо применять наиболее инертные носители, например, широкопористое стекло, широкопористые силикагели, инзенский кирпич, обработанный триметилхлорсиланом, хромосорб и др. Результаты идентификации компонентов, полученные методом Ковача, должны быть про- [c.121]

    Рентгеновский фазовый анализ кристаллических веществ подразделяется на качественный и количественный. Задачей качественного фазового анализа является установление фазового состава исследуемого вещества, выявление всех присутствующих в образце фаз и их идентификация. Во многих случаях при экспериментальных исследованиях твердых тел этим этапом и ограничиваются. В задачу количественного фазового анализа входит установление, объемных количеств присутствующих в образце фаз. Чувствительность рентгеновского фазового анализа определяется тем минимальным количеством фазы в образце, которого достаточно для формирования собственного дифракционного спектра. Обычно нижняя граница чувствительности дифракционных методов оценивается в 10—15 процентов, хотя в ряде случаев удается выявить присутствие фаз, содержание которых не превышает 5%. [c.147]

    Идентификацию веществ, их качественное определение можно выполнять непосредственно по данным хроматографического анализа для количественных же определений хроматографические разделения часто служат лишь подготовительной операцией. В настоящее время успешно развиваются количественные хроматографические методы, что в ряде случаев существенно ускорит количественный анализ. [c.10]

    Хроматермография. Одним из новых методов является метод хроматермографии газов. Он успешно применяется для качественного анализа и идентификации веществ из смеси. [c.50]

    Для качественного анализа, в частности для групповой классификации или идентификации веществ, т. е. возможности избирательного детектирования определенной группы веществ, бо лее предпочтительно второе определение. Для характеристики свойств селективного детектора чаще всего применяются данные, полученные на основе первого определения [c.44]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    КАЧЕСТВЕННЫЙ АНАЛИЗ, идентификация (обнаружение) компонентов анализируемых в-в и приблизительная количеств оценка их содержания в в-вах и материалах В качестве компонентов м б атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы функц группы и радикалы, фазы (см Элементный ана тз Изотопный анализ Молекулярный анализ Органических веществ анализ, Фазовый анализ) [c.359]

    Качественный анализ. Идентификация хроматографическими методами — это прежде всего идентификация по параметрам удерживания ( и, Vjf), которые характеризуются хорошей воспроизводимостью, относительные стандартные отклонения ве превышают 0,02. Совпадение величин удерживания неизвестного и стандартного соединений свидетельствует о том, что эти соединения могут быть идентичными. Если различные вещества имеют одинаковое время удерживания, то для большей достоверности идентификации сравнение хроматографических параметров известного и неизвестного веществ проводят в сильно различающихся условиях. Например, получают данные об их фоматографическом поведении на колонках с различными неподвижными фазами. Если хроматографическое поведение стандартного и неизвестного веществ в таких случаях идентично, то достоверность идентификации возрастает до 99%. [c.288]

    Для проведения качественного анализа неорганического вещества, как правило, его переводят в раствор, и практически задача сводится к обнаружению катионов и анионов. Оч1ень редко в анализе необходима идентификация вещества, т. е. подтверждение уже известного состава с помощью химических реакций и определение присущих веществу физических констант (ч астота и интенсивность полос поглощения в различных спектрах, плотность и т. д.). В этом случае и если состав анализируемого раствора несложен, можно проводить анализ дробным методом. Если имеют дело с неизвестным и сложным составом анализируемого раствора, то для обнаружения входящих в него катионов и анионов применяют систематический метод анализа. [c.120]

    Качественный анализ (идентификация) компонентов сложных смесей органических загрязнений, которые составляют более 80% всех загрязнений окружающей среды, в ВЭЖХ, как и в газовой хроматографии (см. главу I), является наиболее важной и наиболее трудной частью аналитической процедуры определения загрязняющих веществ. [c.134]

    Абсорбционная спектроскопия может служить одним из методов качественного анализа. Идентификация какого-либо чистого соединения основана на сравнении спектральных характеристик (максимумов, минимумов и точек перегиба) неизвестного вещества и чистых соединений близкое подобие спектров служит хорощим доказательством химической идентичности, особенно если в спектре определяемого вещества содержится большое число четких, легко идентифицируемых максимумов. Для идентификации особенно полезно исследование поглощения в ИК-области, поскольку многие соединения отличаются тонкой структурой спектров. Применение спектрофотометрии в видимой и УФ-областях в качест-йенном анализе более ограничено, так как полосы поглощения имеют тенденцию к уширению, что скрывает их тонкую структуру. Тем не менее спектральные исследования в этой области часто дают полезную качественную информацию о наличии или отсутствии некоторых функциональных групп в органических соединениях (таких, как карбонил, ароматическое кольцо, нитрогруппа или сопряженная двойная связь). Еще одна важная область применения связана с обнаружением сильно поглощающих примесей в непоглошающей среде если молярный коэффициент поглощения в максимуме поглощения достаточно высок, легко установить наличие следовых количеств загрязнений. [c.143]

    Выделение и очистка органических веществ часто связаны с большими трудностями. Эти трудности обусловлены тем, что свойства органических веществ крайне разнообразны и поэтому методы их выделения и очистки весьма многочисленны. Если к тому же учесть сложность и неоднозначность протекания большинства реакций в органической химии, то становится понятным, что эта задача в отдельных случаях является наиболее отвественной частью химического процесса. Методы выделения, очистки, идентификации и качественного анализа органических веществ подробно изложены в практических руководствах по органической химии. Поэтому мы рассмотрим лишь общие примеры, применяемые при очистке веществ в простейших случаях. [c.14]

    Зависимость между каким-либо аддитивным свойством органических соединений и их молекулярной рефракцией ( .25) графически выражается семейством параллельных (или почти параллельных) линий, каждая из которых соответствует определенному гомологическому ряду. Если же строить графики зависимости удельных свойств х от величины, обратной молекулярной массе, то для семейств гомологических рядов будут получаться семейства прямых линий, сходящихся в одной точке с координатами 1/М=0 и х=Хсщ1Мсв - На координатных осях можно откладывать не только молекулярные аддитивные константы, но любые другие физические свойства, например, п я й, п и / кип. В таком случае гомологическим рядам будут соответствовать уже не параллельные прямые, а более или менее широкие и искривленные полосы. Подобные диаграммы свойство — свойство могут быть весьма полезны при качественном анализе органических веществ для установления принадлежности исследуемого соединения к тому или иному гомологическому ряду, для определения места этого соединения в данном гомологическом ряду и его идентификации. В принципе для этого достаточно измерить показатель преломления и какое-либо другое физическое свойство и с помощью соответствующей диаграммы с нанесенными на нее линиями гомологических рядов определить, какой линии или полосе отвечают константы анализируемого соединения. [c.103]

    Экстракты торфов. Выделены и идентифицированы высшие члены парафиновых углеводородов, эфиры высокомолекулярных спиртов и кислот жирного ряда, свободные кислоты предельные и непредельные. Кроме того, установлены хлорофил, ксантофил и кератин. По классификационным признакам, применяемым при качественном анализе органических веществ, установлено присутствие спиртов, кислот, альдегидов, кетонов, хинонов, сложных эфиров, ацетатов, в том числе лактонов и фенолов. В Се это относится к части, растворимой в бензоле или спирто-бензольной смеси, т. е. представляет относительно небольшую часть торфа. Приведенные данные свидетельствуют об очень сложном составе экстракта. Все перечисленные вещества состоят из С, Н, О практически совсем не затронута идентификация азотистых соединений, количество которых в торфах, особенно в низинных, достигает значительной величины. [c.12]

    Задача качественного спектрального анализа (идентификация углеводородов) заключается в обнаружении этих характеристических частот в спектре исследуемого вещества и сравнении получен-Н010 спектра со спектрами индивидуальных модельных углеводородов. В чем заключается причина способности органических пе-ществ, в частности, углеводородов поглощать лучи спектра  [c.32]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Рассмотрев 83 соединения, Мейерсон [136] предложил полную схему идентификации алкилбензолов. В схеме используются пики молекулярных и псевдомолекулярных ионов, максимальные пики спектра и пики характеристических ионов с массами 77, 79, 91, 93, 105, 107, 119, 133. Учитывались также соотношения пиков ионов с массами 91 и 92. Проведение качественного анализа по указанной схеме возможно, если исследуемое индивидуальное вещество является моно- или полиалкилбензолом. [c.119]

    По сложившейся традиции принято различать качественный и количественный анализы. С помощью качественного анализа устанавливают, какие элементы, молекулы или ионы входят в состав вещества. Количественный анализ позволяет определить содержание компонентов в веществе после идентификации их методами качественного анализа. Это различие межд качественным и количественным анализом, кажущееся таким простым, в действительности проблематично. При проведении анализа по существующим в настоящее время методикам в любом веществе возможно о.бнаружить большое количество элементов, в том числе и такик, присутствие которых не предполагалось. Содержание этих элементов может быть на несколько порядков меньше содержания основных компонентов. Поэтому, когда аналитик утверждает, что в веществе А содержится элемент В, то эта высказывание имеет смьгсл только в том случае, если указан порог чувствительности (см. прим. на с. 434) реакции обнаружения. Отсюда следует вывод, что к реакциям, применяемым в качественном анализе, также необходим количественный подход. [c.7]

    В качественном анализе нельзя обойтись без идентификации кристаллических веществ лод микроскопом. Для аналитических целей используют обычный микроскоп. Необходимо увеличение трех размеров 40Х, 8ОХ1 200Х- При большом расстоянии до рассматриваемого объекта нужны слабые объективы й сильные окуляры. Использование конденсора и поворотного столика не обя1зательно. Микроскоп устанавливают на специальном столе в нерабочее время его надо хранить в -специальном ящике или покрыть полимерной пленкой для защиты от агрессивных лабораторных паров. [c.32]

    Кроме перечисленных выше методов для идентификации хроматографически разделенных веществ, могут быть использованы кулонометрия, полярография, спектроскопия в ультрафиолетовой и видимой областях, обычный анализ элементарного состава и др. При отсутствии перечисленных дорогостоящих приборов во многих случаях можно воспользоваться классическими методами качественного анализа. [c.122]

    Для правильной идентификации вещества необходимо знать также интенсивности линий. Для качественного фазового анализа обычно достаточна грубая визуальная оценка интенсивностей. Перед промером пленки полезно наметить линии, которые можно использовать для построения шкалы интенсивностей. Общепринятой является стобалльная шкала. Для оценки интенсивностей удобно пользоваться марками почернения (можно использовать марки почернения, применяемые для оценки интенсивностей пятен в структурном анализе). [c.37]

    Внутренние и внешние хроматограммы. Вопрос получения внутренних или внешних хроматограмм при разделении веществ имеет важное значение для последующего качественного и количественного определения веществ. Внутренние хроматограммы получают в случае разделения или идентификации веществ непосредственно на стационарной фазе. В этом случае прояви ление хроматограммы заканчивается прежде, чем подвижная фаза доходит до конца слоя сорбента. Если же элюирование продолжают до тех пор, пока вещество вместе с подвижной фазой не достигнет конца стационарной фазы, и исследуют затем небольшие порции элюата, то получают внешнюю хроматограмму при построении зависимости концентрации элюата от его объема, (мл). В случае окрашенных компонентов или при отличии свойств компонентов (различной радиоактивности, способности абсорбировать УФ- или ИК-излучение) от свойств стационарной фазы внутреннюю хроматограмму можно определить визуально или зарегистрировать на стационарной фазе. Хроматограммы такого типа получают в бумажной и тонкослойной хроматографии, отчасти и в колоночной. Бесцветные соединения можно проявлять, химическим путем. Качественный анализ веществ проводят, оценивая за медление передвижения анализируемого вещества относительно движения фронта растворителя. Для этого сравнивают путь, пройденный веществом, с путем, пройденным фронтом растворителя, и отношение между ними обозначают через [c.345]


Смотреть страницы где упоминается термин Качественный анализ и идентификация веществ: [c.208]    [c.319]    [c.4]    [c.281]    [c.9]   
Смотреть главы в:

Физические методы исследования в химии 1987 -> Качественный анализ и идентификация веществ




ПОИСК





Смотрите так же термины и статьи:

Анализ вещества

Анализ качественный

Идентификация веществ

Качественная идентификация веществ



© 2025 chem21.info Реклама на сайте