Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение этилена и его свойства

    В книге описаны свойства и методы получения этилен- и пропиленгликоля, высших гликолей, высокомолекулярных полимеров окисей этилена и пропилена, эфиров этилен- и пропиленгликолей. Рассмотрены основные области их применения и методы анализа. Глава, посвященная пропиленгликолю, включает раздел по свойствам и технологии получения окиси пропилена. [c.352]


    Советскими химиками создан новый вид полиамидного волокна— энант, которое мало отличается по своим свойствам от других полиамидных волокон. Оно более светостойко и эластично, чем волокно капрон. Сырьем для получения энанта являются этилен и четыреххлористый углерод. [c.398]

    Непредельные углеводороды этилен и ацетилен, их получение, свойства и применение. Реакции полимеризации. [c.330]

    Первые указания, касающиеся подбора катализаторов, смогла дать теория промежуточных соединений. Она считала, что, например, при гидрогенизации этилена над никелем сначала образуется гидрид никеля, который, взаимодействуя с этиленом, образует продукт гидрогенизации этан. Аналогично при дегидратации спирта над окисью алюминия сначала с выделением воды образуется алкоголят алюминия, который далее распадается, образуя продукт реакции — этилен. Однако исследования, проведенные в нашей лаборатории совместно с Б. В. Ерофеевым [2], показали, что гидрид никеля, который был получен и свойства которого были исследованы, совсем не обладает свойствами, постулируемыми теорией промежуточных соединений. Мы также изучили совместно с В. В. Щекиным [3] кинетику распада этилата алюминия, который получили по методу В. Е. Тищенко, и нашли, что он совсем не дает продуктов реакции, требуемых теорией промежуточных соединений именно, вместо этилена из него образуется этиловый эфир, причем алкоголят разлагается при более высокой температуре, чем происходит каталитическая реакция образования этилена из спирта. Недавно совместно с Г. В. Исагулянцем и другими соавторами [4] мы, пользуясь радиохимическим методом, сравнили скорость образования этилена 1) непосредственно из этилового спирта и 2) через этилен. При этом оказалось, что идут обе реакции, причем при высокой температуре преобладает первая из них. Значительным недостатком теории промежуточных соединений является предполагаемое образование промежуточного соединения только с одним реагирующим веществом, например при гидрогенизации — только с водородом. Главным же недостатком теории промежуточных соединений является то, что она рассматривает фазовые промежуточные соединения и совершенно неспособна объяснить чрезвычайной чувствительности активности и избирательности катализаторов от их способа приготовления, от их генезиса. Так, например, окись тория, если ее, как обычно, получать прокаливанием нитрата, служит типичным катализатором дегидратации спиртов, однако если окись тория осадить аммиаком, то она является катализатором дегидрогенизации. Этот вопрос был недавно подробно изучен в нашей лаборатории (А. А. Толстопятова [5]). [c.7]


    Получение и свойства этилен-пропиленового каучука 279 [c.279]

    ПОЛУЧЕНИЕ И СВОЙСТВА ЭТИЛЕН-ПРОПИЛЕНОВОГО [c.279]

    В недавнем обзоре [27] по окислению этилена цитируется большое число исследований хемосорбции (см. табл. 5 и 6). Почти все результаты получены методами, связанными с использованием либо очень низких давлений вплоть до вакуума, либо низких температур, или того и другого вместе, что весьма далеко от условий промышленного окисления этилена. Хотя все эти исследования внесли значительный вклад в наше понимание свойств системы серебро — кислород и ее взаимодействия с этиленом и продуктами окисления, необходимо крайне осторожно использовать полученные результаты для объяснения механизма процесса окисления, происходящего в совершенно других условиях. [c.228]

    Блок- и привитые сополимеры способны образовывать коллоидные растворы Это их свойство используют для получения неионогенных детергентов и эмульга торов (см. далее получение блок-сополимеров на основе этилен- и пропилен оксида). [c.63]

    Исходными материалами для получения полимерных углеводородов, рассматриваемых в настоящей главе, служат непредельные углеводороды этилен, пропилен, н-бутилены, изобутилен, стирол и др. Полимерные углеводороды, полученные полимеризацией указанных соединений, которые также называют полиолефинами, являются насыщенными соединениями, так как содержащиеся в цепях двойные связи приходятся па очень большое число атомов углерода (порядка нескольких тысяч). Этим определяются такие свойства полимерных углеводородов, как химическая инертность и влагостойкость. [c.92]

    Технически ценные свойства имеют сополимеры фтор-алкенов с алкенами. Сополимер тетрафторэтилена с этиленом используется для электроизоляции проводов, получения химически стойких изделий (труб, пленок). [c.363]

    Применение серной кислоты в качестве водоотнимающего средства ограничено из-за ее окислительных свойств. Этилен, полученный путем нагревания этилового спирта с серной кислотой, всегда загрязнен двуокисью углерода и двуокисью серы. Количество этих загрязнений можно уменьшить прибавляя сульфат меди и пятиокись ванадия, но все же этот метод дает худшие результаты по сравнению с другими методами получения этилена. В общем при применении в качестве водоотнимающего средства серной кислоты следует избегать высоких температур и добавлять ее очень осторожно из-за возможности обугливания вещества. Например, при получении пентена-1 из амилового спирта необходимо употреблять значительно меньшее количество серной кислоты, чем при получении пропена или 2-метилпропена из соответствующих спиртов, так как в первом случае происходит значительное обугливание вещества . Применение малых количеств серной кислоты или проведение реакции в присутствии большого избытка спирта приводит к образованию значительных количеств эфира и в связи с этим—к понижению выхода алкена. [c.697]

    Исследования, приведшие к синтезу мономерного газа тетра-фторэтилена, относятся к концу XIX столетия. Тетрафторэтилен был получен в процессе изучения фторзамещенных этиленов. Однако лишь в 1933 г. были опубликованы достаточно надежные данные относительно синтеза тетрафторэтилена. Было найдено, что тетрафторэтилен представляет собой газ, лишенный запаха и не обладающий токсичными свойствами, с точкой кипения —76,3° С и точкой замерзания —142,5° С. При проведении дальнейших исследований было установлено, что газообразный тетрафторэтилен полимеризуется при хранении и перевозке и переходит в политетрафторэтилен. [c.31]

    Изменение содержания в этилене примесей двуокиси углерода в пределах 50—250 см /м и общей серы в пределах 0,8—2,4 мг/м практически не оказывает влияния на такие свойства полиэтилена, как прочность, относительное удлинение при разрыве, морозостойкость и диэлектрическая проницаемость. С другой стороны, диэлектрические потери (tg б) заметно зависят от содержания примесей. На рис. 17,9 прослежено влияние примесей в этилене на тангенс угла диэлектрических потерь полиэтилена, полученного при 185—190 °С и давлении (1,2— 1,3)-10 Па (1250—1350 кгс/см ). Первая серия испытаний проводилась при постоянном содержании серы (0,9—1,1 мг/м ), вторая серия — при постоянном содержании двуокиси углерода (0,012% об.). Полиэтилен, соответствующий лучшим мировым стандартам (tgo = 2-10 ) может быть получен при содержании двуокиси углерода не выше 30—50 см /м и общей серы — не выше 0,5 мг/м . Метод жидкостной очистки этилена включает четыре ступени  [c.352]

    В настоящее время в Советском Союзе на некоторых заводах созданы цехи для производства этилена 92—95%-ной чистоты из газов пиролиза этана, нронана, бутана или бензина. Получаемый этилен вполне удовлетворяет по своим свойствам требованиям на сырье для получения этилового спирта. Однако в других нефтехимических процессах, нанример в производстве полиэтилена, такая фракция не может служить сырьем. Наличие примесей в этиленовой фракции отрицательно сказывается на долговечности катализатора и на качестве полиэтилена [1]. Использующаяся для производства полиэтилена этиленовая фракция должна содержать этилена не менее 99%, метана и азота до 0,1%, ацетилена до 0,005%, окиси углерода до 0,02%, углекислоты до [c.172]


    Процесс характеризуется высоким выходом жидких продуктов пиролиза с уникальными свойствами, позволяющими на базе их переработки получать углеродное графитное волокно, специальные углеродистые материалы, масла специального назначения, пеки и другие ценные продукты. При выборе оптимальных условий пиролиза фирма ориентировалась не столько на получение высоких выходов низших олефинов, сколько на обеспечение максимально выгодного состава жидких продуктов, что сопровождалось, как правило, высоким соотношением в газе пиролиза ацетилена к этилену (1 1). [c.196]

    Примером простейшей реакции полимеризации может служить уплотнение этилена СНз = СНг в полиэтилены (С2Н4),,. Строение этих смол . ..—СНг—СН2—СНг—СНг—СНг —..., т. е. они состоят из цепеобразных молекул. По мере присоединения новых групп СНг усложняется состав смолы и изменяются ее свойства. Этилен переходит из газообразного состояния, каким является исходный мономер, в вязкую жидкость, а затем, в конечной стадии, в твердое вещество. В этилене водород легко может быть замещен другими атомами или группами атомов (С1, МНг, СООН н др.). При сополимеризации можно получить полимеры, свойства которых лучше свойств полимеров, полученных ка основе каледого из мономеров отдельно. [c.392]

    В результате исследований по синтезу эластомеров на осно ве этилена и у олефинов установлено что с увеличением моле к лярного веса с олефина улучшаются свойства полученных этилен а олефиновых эластомеров — повышаются морозостои кость, физико механические показатели вулканизатов [268 286] Поэтому эластомер на основе этилена и гексена 1 представляет большой интерес [c.70]

    Некоторые каучуки специального назначения синтезируют путем полимеризации ненасыщенных соединений в растворе (этилен-прЬпиленовый, бутилкаучук, полиизобутилен) или в эмульсии (бутадиен-нитрильный, хлоропреновый, фторкаучуки и др.)- Способы получения и свойства этих каучуков рассмотрены в предыдущих главах. Ряд синтетических каучуков специального назначения, обладающих ценными свойствами, получают методами поликонденсации, миграционной полимеризации и сополимеризации, а также в результате полимераналогичных превращений. [c.489]

    М. В. Перрин [22] описывает более ранний этап экспериментальных исследований, приведших к открытию полиэтилена в лабораториях Империал Кемикел Индастриез. Это исследование вначале даже отдаленно не было связано с изучением полимеризации или свойств этилена, а было направлено на получение основных данных о влиянии высокого давления на физические свойства вещества и возможного химического эффекта от применения высокого давления. Специальный опыт, приведший к образованию полимера, предназначался для конденсации бензальдегида с этиленом. Однако при вскрытии автоклава было обнаружено, что бензальдегид остался в неизмененном состоянии, а внутренние стенки автоклава были покрыты белым твердым веществом в виде тонкой пленки. Ввиду того, что последующие опыты сопровождались взрывами, работа была прекращена. Спустя 2 года этот продукт был открыт вторично и снова случайно. Перрин подчеркивает, что факт признания открытия, может быть, является более выдающимся событием, чем само открытие. Фирма Империал Кемикел Индастриез построила небольшой завод и запатентовала полиэтилен в Англии, США и Франции как новое вещество. [c.166]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Олигопропилен по сравнению с олигоэтиленом не обладает высокими вязкостно-температурными свойствами и термостабильностью, что объясняется наличием в молекулярной цепи боковых ответвлений. Поэтому наиболее целесообразным способом получения синтетических масел [пат. США 3923919, 4182922] является соолигомеризация пропилена с этиленом в присутствии стерео-специфических катализаторов с последующим гидрированием полученных соолигомеров. Широкие возможности варьирования структуры соолигомеров открываются при использовании в качестве исходного сырья различных мономеров этилена, пропилена, стирола, бутадиена и др. Согласно пат. ГДР 109226, например, синтетические смазочные масла получают соолигомеризацией под давлением алкенов С4 или бутеновой фракции газа пиролиза с бутадиеном-1,3 в присутствии катализатора Фриделя — Крафтса. [c.155]

    Хорошая возможность регулирования пластичности и эластичности натуральных и синтетических каучуков в процессе пх получения и вулкаиизаиии делает их незаменимыми видами связующих веществ УНС специального назначения. Химические и физические свойства различных каучуков (изопреиовый, этилен-пропилеи-диеновый, хлоропреновый, бутилкаучук, уретановый и др.) изложены в специальных работах [101] и здесь не рассматриваются. [c.81]

    Эти соединения дают при гидролизе смесь н-углев одородов, имеющих четное число С-атомов в молекуле. Если для реакции с этиленом применяют трипропилалюминий, то образуются углеводороды с нечетным числом С-атомов. Таким путем был получен полиэтилен с молекулярным весом около 5000 (Циглер, Натта). По.вдбиые высокополИ мерные соединения приобрели очень большое значение в качестве пластических масс. Физические сЕюйства полиэтилена, полученного при низком давлении, несколько отличаются от свойств полиэтилена, полученного при высоком давлении, [c.189]

    МЕТИЛАКРИЛАТ (метиловый эфир акриловой кислоты) Hj H OO Hj— бесцветная жидкость, т. кип. 80,2 С, По химическим свойствам и способам получения М. подобен метилметакрила-ту. В промышленности получают из нитрила акриловой кислоты, из этилен-циангидрина, прямым карбонилирова-ние. л ацетилена, М. обладает наркотическим и ядовитым действием. Его пары раздражают слизистые оболочки носа, горла, глаз. М.— мономер, полимернзу-ющийся под действием свободных радикалов. Используют, в основном, как сополимер, напрнмер со стиролом. [c.160]

    Одним из хорошо изученных комплексов платины, носящих имя его открывателя, является соль Цейзе К[Р1 С1з(С2Н4)]. Это окрашенное в желтый цвет соединение было синтезировано датским фармацевтом Цейзе еще в 1827 г. Соль Цейзе — одно из первых синтетически полученных металлоргапических соединений одним из лигандов в координационной сфере платины (И) здесь является этилен (донорные свойства проявляет двойная связь Н2С=СН2 [2, с. 125]). [c.161]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Табл 3 -СОСТАВ и СВОЙСТВА ТЕХНИЧЕСКИХ МЕТИЛСТИРОЛОВ, ПОЛУЧЕННЫХ АЛКИЛИРОВАННЕМ ТОЛУОЛА ЭТИЛЕНОМ НА >ТСАЗ ННЫХ КАТАЛИЗАТОРАХ [c.65]

    Технологические схемы процессов получения низкомолекулярных олиго-и полиизобутиленов в России имеют некоторые особенности, в частности они отличаются конструкцией реакторов-полимеризаторов, а также типом каталитической системы (AI I3 в хлорэтиле или в ксилольной фракции углеводородов). Если обычно используются реакторы, в которых теплосъем осуществляется преимущественно за счет внутреннего теплосьема - испарения компонентов сырьевой смеси (кипения), то в России, как правило, термостатирование производится за счет интенсивной теплопередачи через стенки или охлаждаю-1цие поверхности к циркулирующему агенту (аммиак, этилен), что, естественно, менее эффективно. Предусмотрена возможность варьирования в определенных пределах технологического режима ведения процесса (давление, температура, расход катализатора и т.д.), что позволяет получать продукты с достаточно разнообразными эксплуатационными свойствами [6 . [c.300]

    Б 50-х годах этого столетия Циглер открыл процесс получения полиэтилена с неразветвленными цепями, нашедший также широкое применение. Процесс состоит в действии триэтилалюминия на этилен. Так, триэтилалюминий присоединяется к олефинам этим свойством обладает и получающийся в результате присоедкнения олефина триалкилалю-миний  [c.276]

    Исследована термодеструкция поливинилхлорида в присутствии ПВС [166]. Поливинилхлорид ускоряет дегидратацию ПВС, а НС1, выделяющийся при деструкции поливинилхлорида, вступает в реакцию присоединения по сопряженным с гидроксильными группами двойным связям ПВС. Лучшей совместимостью с поливинилхлоридом обладают частично гидролизованные сополимеры ВА с этиленом, введение которых в композицию позволяет также снизить температуру ее переработки. В то же время наличие гидроксильных групп в сополимерах обеспечивает, как и в случае ПВС, увеличение термостабильности поливинилхлорида. [а. с. СССР 514002, 626103]. Одновременно улучшаются и физико-механические "свойства полимера (ударная вязкость и теплостойкость) [167]. Аналогичный, эффект получен при модификации частично гидролизованным сополимером ВА и этилена компаундов поливинилхлорида и сополимеров стирола, используемых для внутренней отделки автомобилей а. с. СССР 837971]. Введение этого сополимера в композицию, применяемую для изготовления носителей звукозаписи (грампластинок, фонокарт), позволяет улучшить их звучание [а. с. СССР 420638]. [c.165]


Смотреть страницы где упоминается термин Получение этилена и его свойства: [c.264]    [c.95]    [c.1152]    [c.594]    [c.595]    [c.19]    [c.290]    [c.344]    [c.341]    [c.329]   
Смотреть главы в:

Руководство к практическим занятиям по органической химии для студентов медицинских институтов -> Получение этилена и его свойства

Практикум по органической химии -> Получение этилена и его свойства




ПОИСК





Смотрите так же термины и статьи:

Этилен получение

получение и свойства



© 2025 chem21.info Реклама на сайте