Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное

    Определение кислотно-основных свойств с точки зрения переноса электронов было использовано рядом английских авторов [2] для классификации реагентов на нуклеофильные (доноры электронов) и электрофильные (акцепторы электронов). Существует также классификация реакций на такие категории. [c.499]


    Полученные результаты, как указывалось выше, связываются с протеканием гидрогенолиза метилциклопентана по двум механизмам. Считают [177], что преобладание того или иного из них обусловлено увеличением (рост Рн, очистка водорода от примеси О2) или уменьшением (добавка О2 или Н2О) электрофильности катализатора. Однако, с нашей точки зрения, электрофиль-ность может являться существенным, подчас весьма важным (см., например, [175]), но отнюдь не единственным фактором, определяющим то или иное распределение продуктов гидрогенолиза алкилциклопентанов. Необходимо учитывать также способ адсорбции исходных углеводородов на поверхности катализатора, легкость атаки той или другой связи, наличие взаимодействия атомов в молекуле. [c.137]

    Так как перкислоты являются электрофильными реагентами, то им свойственна тенденция сохранять положительно поляризованные гидроксильные группы [36], которые легко теряют протоны, как только присоединяются к я-электронам двойной связи, поэтому конечными продуктами реакции являются эпокись и кислота, соответствущая перкислоте. [c.362]

    С практической точки зрения электрофильное замещение в настоящее время является наиболее важным из реакций замещения для ароматических углеводородов. В этот класс включаются такие хорошо известные реакции, как алкилирование, ацилирование, нитрование, сульфирование и галоидирование. Этот класс реакций замещения привлек наибольшее внимание химиков, интересующихся теоретической стороной химии ароматических соединений. Поэтому в настоящей главе особое внимание уделено электрофильным реакциям замещения и дано более краткое описание развивающимся областям нуклеофильных и свободно-радикальных реакций замещения. [c.392]

    Хотя этими исследованиями был установлен факт, что ароматические углеводороды способны к взаимодействию с типичными электрофильными агентами, но они не позволили ни произвести количественную оценку влияния структуры на величину взаимодействия, ни сде.тать определенные заключения об истинной природе этого взаимодействия. Позднее эти явления были подвергнуты детальному количественному исследованию, и теперь можно сделать определенное заключение относительно природы и величины взаимодействия, происходящего при образовании этих ароматических комплексов. [c.397]

    Переходное состояние представляет собой точку максимальной аккумуляции энергии в ходе реакции, поэтому его не удается выделить. Следовательно, выделение стойких ст-комнлексов [И, 60] подтверждает заключение, что при электрофильном замещении в ароматическом кольце скорее образуются промежуточные соединения типа ст-комплексов (XLX), чем простое переходное состояние, показанное на (XL). [c.408]


    Дьюар предположил, что тг-комплексы принимают участие в электрофильном замещении в ароматическом кольце [106, 109]. Он предложил для такого замещения механизм ХЬП  [c.408]

Рис. 5. Диаграмма энергии для хода реакции в типичной симметричной электрофильной реакции замещения. Рис. 5. <a href="/info/6012">Диаграмма энергии</a> для <a href="/info/592095">хода реакции</a> в типичной симметричной <a href="/info/20488">электрофильной реакции</a> замещения.
    Детальное обсуждение экспериментальных данных, относящихся к этим заключениям, содержится в разделе Электрофильное замещение . [c.411]

    Направляющие влияния при электрофильном замещении i [c.412]

    График логарифма отношения сравнительных реакционных способностей толуола и бензола и логарифма отношения м- и п-изомеров для толуола дает простую линейную зависимость между этими величинами [54]. Первоначально в этих данных существовал ряд расхождений. Однако эти расхождения были затем устранены, и все электрофильные реакции замещения, для которых теперь имеются соответствующие точные данные, следуют указанной зависимости. [c.423]

    Эти доводы можно представить себе в более ясной форме при более точном рассмотрении природы частично образованной связи С—2 в переходном состоянии. Такие частично образованные связи между углеродом и электрофильным атомом или группой 2 должны были бы иметь более сильно выраженный ионный характер с меняющейся долей участия в ковалентной связи, в зависимости от природы реагента. Сильно электрофильный реагент Ъ будет требовать низкой энергии активации, и С—Ъ связь будет по характеру сильно ионной. Такая связь будет требовать лишь незначительного участия электронов заместителя в кольце. Следовательно, заместители будут проявлять только слабое направляющее влияние на входящие группы. [c.426]

    И наконец, интересный пример атаки электрофильного реагента по кратной связи дает нитрование ароматических соединений в сильнокислых растворах. В концентрированных растворах Н2304 частицы HNOз сильно диссоциированы но реакции [c.502]

    Высказано предположение [21], что изомеризация пентанов и более высокомолекулярных парафинов может протекать через ассоциацию углеводорода с ионизированным комплексом (К А1С14 ), нричем вслед за активацией происходит перегруппировка. Каталитическое действие сводится к одновременной протонно-анионной атаке молекул углеводорода. При этом электрофильная протонная часть катализатора притягивает водород второго углеродного атома углеводородной цепи в результате расшатывания электронов связи углерода с водородом. В то же время нуклеофильная часть катализатора Л1С14 притягивает в противоположную сторону третий углеродный атом. Одновременная атака вызывает общее смещение электронов, в результате чего происходит внутримолекулярная перегруппировка в то время, пока углеводород находится в состоянии ассоциации с катализатором. Реакция диспронорционирова-ния констатируется в тех случаях, когда. активированный углеводород [c.29]

    Природа начальной стадии карбоний-ионной полимеризации является особенно важной, поскольку, как и в свободно радикальной реакции полимеризации она является ключом, при помощи кotopoгo можно обеспечить воспроизводимость и контроль реакции. Легкая полимеризация соответствующих олефинов в присутствии катализаторов Фриделя—Крафтса привела в более ранних работах к предположению, что инициирование цепи может происходить в результате электрофильной атаки таких реагентов па л-электроны двойной связи [123], нанример  [c.157]

    Реакции замещения ароматических углеводородов удобно классифицировать с точки зрения электронных представлений о типах замещения. Так, например, промежуточные соединения типа В с недостатками электронов стремятся к центрам с высокой плотностью электронов в молекулах, с которыми они реагируют. Такие промежуточные соединения называются электрофильными (электронно-акцептерными), и реакции замещения, в которых участвуют такие промежуточные соединения, обозначаются как реакции электрофильного замещения. Подобным же образом промежуточные соединения тина В стремятся к реакционным центрам молекулы с низкой илотностью электронов и называются нуклеофильными. Реакции замещения, включающие участие таких промежуточных соединений, известны как реакции нуклеофильного замещения. Промежуточные соединения в виде свободных радикалов вследствие их электронейтральности мало подвержены влиянию центров большой и малой плотности электронов. Замещения, включающие участие промежуточных соединений в виде свободных радикалов, называются реакциями свободно-радикального замещения [159]. [c.392]

    Обширными исследованиями в настоящее время доказано, что ароматические углеводороды способны образовывать комплексы с большим количеством разнообразных электрофильных веществ. Эти комплексы, несомненно, присутствуют в реакционной смеси, в которой ароматический углеводород претерпевает электрофильное замещейие. Более того, возможно, что они играют важную роль в таких реакциях. Поэтому полезно сделать обзор данных, свидетельствующих в пользу существования этих комплексов и раскрывающих их природу, прежде чем приступить к детальному обсуждению замещения в ароматических соединениях. [c.397]


    Изучение взаимодействия ароматических углеводородов с хлористым водородом [43] и системой хлористый водород — хлористый алюминий [56] оказалось особенно полезным для понимания природы ароматических комплексов с электрофильными агентами. Более того, изучение поведения ароматических углеводородов с фтористым водородом [182] и системой фтористый водород — трехфтористый бор [212] дало чрезвычайно ценные данные для выяснения влияния структуры ароматических компонентов на их способность к образованию комплексов. Следовательно, желательно использовать результаты, полученные при этих исследова- [c.398]

    Дьюар предложил называть комплексы ароматических соединений с электрофильными веществами я-комплексами [106]. Предполагается, что в таких комплексах связь электрофильного реагента образуется за счет я-элоктронов ароматического ядра. Для таких комплексов Дьюар предложил изображение (XVIII), где А — любой электрофильный агент. Он считает, что все ароматические комплексы обладают в основном одинаковой структурой [107]. В соответствии с этим он должен был представить комплекс с НС1 н с системой HAI I в виде л -комплексов следующим образом (XIX, XX)  [c.400]

    Свойства комплексов с хлористым водородом соответствуют структуре, в которой молекула хлористого водорода связана свободно с электронным облаком я-электронов, без образования определенной связи между электрофильной группой и каким-либо определенным атомом углерода (XXI). Свойства комплексов с системой хлористый водород — хлористый алюминий (или соответствующих бромидов) согласуются со структурой типа карбоний-иона, в которой протон перешел к кольцу и соединен с определенным атомом углерода (XXII). Следует отметить, что могут образоваться изомерные формы, содержащие протон как в орто- так и в значительно меньшем количестве в ж/иа-положении. [c.401]

    Для дальнейшего рассмотрения механизма реакций замещения важно ясно представлять себе фактическое различие между электронной структурой этих двух классов комплексов. Как указывалось ранее, бензольное кольцо в настоящее время изображается в виде плоского кольца с относительно высокой копцентрацией электронов по обеим сторонам плоскости. Электрофильные атомы или группы, по-видимому, будут притягиваться к электронному облаку в местах наибольшей плотности. Так как постулируется, что плотность электронов в центре кольца мала, а значительной она является непосредственно выше и ниже плоскости кольца углеродных атомов (рис. 1), то электрофильные атомы или группы должны были бы ассоциироваться с электронами, находящимися но соседству с этой областью, и, по-видимому, должны обладать возможностью легко передви- гаться вокруг кольца высокой плотности электронов, не внося большого изменения в их распределение  [c.401]

    По мере возрастания электрофильной природы реагента должно идти все болео и более глубокое проникновение его в облако я-электронов. Когда проникновение станет достаточным, облако я-электронов разрушится и электрофильная группа или атом начнут контролировать отдельную пару электронов и присоедпняться при помощи этой пары к одному из шести атомов углерода кольца. Другими словами, реагент, обладающий высокой злсктрофильностью, проникает через облако я-электро-нов и образует настоящую ст-связь с одним из атомов кольца. [c.401]

    Имеются данные, указы1шющио иа существование двух различных типов комплексов ароматических углеводородов с резко различными свойствами, разделенные между собой значительным потенциальным энергетическим барьером. Один тип комплексов включает свободную связь электрофильного агента с облаком я-электронов. Эти комплексы называются я-комплексами. Второ тин включает проникповение такого агента в облака я-электронов и разрушение его, приводящее в результате к образованию настоящей сг-связи с одним из углеродных атомов кольца. Эти производные были названы т-комплексами. Свойства комплексов ароматических углеводородов ц влияние структуры ароматических углеводородов на стойкость этих комплексов очень хорошо объясняются в понятиях структуры, предложенной для я- и (т-комилексов. [c.406]

    Дейтерирование ароматических соединений является типичной реакцией электрофильного замещения, которая подчиняется, всем обычным правилам ориентации электрофильного замещения [64, 167, 179]. Уже отмечалось, что ароматические углеводороды, например бензол, подвергаются дейтерированию при помощи хлористого дейтерия только в присутствии таких катализаторов, как хлористый алюминий, и что, по всей вероятности, реакция идет через образование <г-комплекса [43]. Структура, предложенная для ст-комплекса, аналогична структуре промежуточного соединения в реакции Пфейфера-Визингера с, = Н . [c.408]

    В предложенном механизме электрофильный агент показан как уже образовавшийся в условиях реакции и принимающий в ней участие. Так происходит, по-видимому, при меркурировании, где реакция, вероятно, включает участие иона двухвалентной ртути (до некоторой степени сольватированного), и при нитровании смесью кислот, где в качестве промежуточного соединения, как было показано, должен участвовать питроний-ион NOj . Галоидирование при обычных условиях, по-видимому, не включает участие положительно заряженных промежуточных соединений, как С1 и Вг" , но вместо них, вероятно, включает образование поляризованных молекул галоидов, которые переносят эти промежу- [c.410]

    Таким образом, механизм (XLIII) не может считаться полным. Для более общего случая механизм должен включать участие реагента ZB, который представляет собой источник электрофильной группы Z, как это показано в продукте (В — любая основная группа, которая может переносить Z в ароматическое кольцо. Например, следующий механизм будет представлять обмен водорода на фтористый водород, если принять, что Z =H и B =F ). Общий механизм виден на схеме XLVI. [c.411]

    Механизм XLHI применим к реакциям замещения, когда электрофильный реагент Z" существует как таковой. Механизм XLVI представляет более общий случай, когда электрофильная группа переносится от реагента в кольцо, не переходя в свободное состояние. Эти механизмы, как кажется, способны коррелировать известные факты относительно замещения в ароматическом ядре. Их применение к специфическим реакциям замещения будет рассмотрено ниже. [c.411]

    Для обсуждения направляющего влияния при электрофильном замещении в ароматическом ядре удобно разделить материал на четыре части влияние полярности заместителя, стерический эффект заместителя, влияние полярности замещающего вещества и стерический эффект заме-щающего вещества. [c.412]

    Подобным же образом преимущественная ж-ориентация у нитробензола является следствием резонанса с индукцией понижающего плотность электронов во всех положениях кольца, но особенно в о-и-положе-ниях, что делает этн положения наименее чувствительными к действию электрофильных реагентов (XLVIII)  [c.414]

    Инголд [164] предпочитает другое объяснение. Он приводит аргументы в пользу того, что резонансная форма, которая преимущественно удаляет электроны из о-положения (LVI), требует делокализации только одной гг-связи, в то время как соответствующая форма, которая предпочтительно удаляла бы электроны из /г-положения (LVII), требует делокализации двух я-связей. Было предсказано что влияние LVII на резонансный гибрид будет больше, чем влияние LVI, в результате чего положительный заряд в п-положении будет больше, чем в о-положепии. Таким образом, в соответствии со взглядами Инголда электрофильный реагент преимущественно отталкивается от п-положения. [c.416]

    Уже отмечалось, что степень л-замещепия в толуоле возрастает в следующем порядке бромирование < нитрование < введение изопропила. Как будет показано ниже, фактическими замещающими агентами, принимающими участие в этих реакциях, являются, как предполагается, Вгз, NOa, (СНз)2СН . Предсказанный порядок изменения электрофиль-ности этих частиц является таким же Вг2< NOf < (СНз)2СН . Поэтому так называемая активность замещающего вещества, несомненно, связана с его электрофильными свойствами. [c.424]

    Аналогично этому любое пред-скавание относительных электрофильных свойств карбоний ионов даст следующий ряд  [c.424]

    Наблюдаемые явления, вероятно, можно объяснить следующими фи-8ИЧССКИМИ интерпретациями. При бромировании и нитровании реакции вамещения не дают изотопного эффекта. Поэтому важным переходным состоянием в этой реакции должно быть такое, в котором имеется частично образованная связь между электрофильной группой и одним из атомов [c.424]

    Если атакующая группа очень слабо электрофильна, как, например, Вга, то потребуется значительное участие кольца в образовании связи углерод—бром и в частичном разрыве связи бром—бром в переходном состоянии. С другой стороны, более электрофильная группа, например питроний-ион, потребует сравнительно небольшого участия кольца в образовании углерод-азотной связи в переходном состоянии. Иными словами, переходное состояние будет включать довольно прочную связь между атомом кольца и слабо электрофильным агентом, так что переходное состояние будет весьма близким к ст-комплексу, тогда как у сильно электрофильного атома будет образовываться срапнительно длинная, слабая связь. [c.426]

    С другой стороны, сравнительно слабые электрофильные реагенты потребуют более высокой энергии активации. Связь С—Ъ по характеру более ковале>1тна. Для образования таких сильно ковалентных связей потребуется значительное участие электронов заместителей в кольце. В таких случаях заместитель будет оказывать значительное влияние сопряжения, проявляющееся в очень сильно выраженной избирательности по отношению к входящим группам. [c.426]

    Любое изменение растворителя или катализатора, увеличивающее электрофильные свойства замещающего агента, должно сказываться в увеличении ионного характера связи С—Ъ и в увеличении атаки в л -поло-жение толуола. Так, бромирование толуола в присутствии катализаторов с возрастающей злектрофильностью < ЗнВг4 < ВРз < А1Вгз должно [c.426]

    Ввиду большой важности реакции алкилирования ароматических углеводородов для нефтяной промышленности полезно в настоящем раздёле подробно рассмотреть эту реакцию. Другие электрофильные реакции замещения рассматриваются более кратко в последующих разделах. [c.428]

    Учитывая эти факты, подтверждающие карбоний-ионный механизм для третичных алкилпроизводных, а также более раннее рассмотренио механизма электрофильного замещения в ароматическом ядре (XLHI), был предложен следующий детализированный механизм для реакции ароматических соединений с третичными галоидалкилами в условиях реакции Фриделя-Крафтса (LXXX)  [c.437]

    При исследовании взаимодействие типичных комплексов Фриделя-Крафтса с ароматическими углеводородами, галоидводородами и галоидалкилами в каждом случае обнаруживается присутствие двух рядов соединений одного, производного от димерного галоидного алюминия, и другого от мономерного. Отсюда следует, что более слабые основания образуют комплексы только с димерной формой, сильные же основания могут образовывать производные обоих типов в зависимости от условий. Это наблюдение наводит па мысль, что галоидные соли алюминия могут действовать как катализатор Фриделя—Крафтса в виде А12Хд и в виде А1Х3, причем первый является более электрофильным и поэтому более активным катализатором. [c.438]

    Многие другие катализаторы реакции Фриделя—Крафтса существуют также в димерной форме (напрпмер, хлорное железо и хлористый галлий). Очевидно, те же выводы окая утся справедливыми и для этих веществ. Действительно, возможно, что те жо доводы можно распространять даже на такие катализаторы реакции Фриделя-Крафтса, как трехфтористый бор, которые нормально существуют только в виде мономера. Так, например, алкилирование бензола в/ гор-метилбутиловым эфиром протекает с ничтожной скоростью, если соотношение трехфтористы1> бор эфир меньше 0,9, медленно при соотношении, равном 1,0, и быстро, когда оно достигает 1,08 [73]. Это наблюдение можно было бы объяснить, если бы димерная форма являлась значительно более сильным электрофильным агентом, чем мономерная. Таким образом, можно предположить, что реакция, ведущая к алкилированию ароматических углеводородов, проходит через образование промежуточного соодинепия типа [c.438]


Смотреть страницы где упоминается термин Электрофильное: [c.91]    [c.348]    [c.353]    [c.373]    [c.377]    [c.377]    [c.377]    [c.301]    [c.414]    [c.415]   
Начала органической химии Книга первая (1969) -- [ c.0 ]

Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.0 ]

Стереохимия соединений углерода (1965) -- [ c.0 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.0 ]

Металлоорганическая химия переходных металлов Том 1 (1989) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильность



© 2025 chem21.info Реклама на сайте