Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение молибдена от других металлов

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]


    В обычном ходе анализа горных пород, когда не проводится осаждение сероводородом в кислом растворе, те небольшие количества молибдена, которые могут содержаться в анализируемом материале, проходят через все стадии анализа незамеченными и остаются в фильтрате после отделения магния. При полном анализе молибденовых минералов молибден, совместно с другими металлами сероводородной группы, осаждают сероводородом после отделения кремнекислоты. [c.356]

    В виде роданидных комплексов рений определяли в различных объектах — молибдените [1334, 1348, 1349, 1351, 1352, 1357, 1358] и других молибденсодержащих материалах [1334, 1342, 1359, 1360], пиролюзите [1339], медных и других рудах и концентратах [1325, 1340, 1345, 1350], полупродуктах производства меди [1344[, сливах обогатительных фабрик [1335] и других материалах [1063, 1359, 1361, 1362], для отделения рения от молибдена и других металлов [1346]. [c.228]

    Метод состоит из четырех главных операций 1) разлагают образец плавиковой, серной и азотной кислотами 2) дважды осаждают железо, титан и другие металлы избытком едкого натра 3) в подкисленном фильтрате по отделении гидроокисей и после добавления к нему тартрата осаждают молибден в виде сульфида (коллектор — сульфид сурьмы) и 4) отделяют сульфидный осадок и в фильтрате определяют вольфрам посредством роданида калия, соляной кислоты и хлорида олова (II) с послед]Ьо-щим экстрагированием эфиром желтого роданидного комплекса вольфрама в его низшей валентности. [c.187]

    Оригинальные количественные методы определения рения в смесях его с молибденом и другими металлами были разработаны отечественными химиками В. И. Бибиковой [19], Н. С. Полуэктовым и А. С. Комаровским [20—22], О. Михайловой, С. Певзнер и Н. Архиповой [23]. Метод определения рения в количестве 1 мг после отделения от молибдена впервые был опубликован О. Михайловой, С. Певзнер и Н. Архиповой [23] ими же были детально изучены условия осаждения рения нитроном и молибдена ортооксихинолином при проведении микроопределений Не в смесях, что позволило найти быстрый и точный микрометод анализа молибденсодержащих материалов на рений. [c.24]

    Электролизом с ртутным катодом из раствора можно эффективно удалять большие количества многих тяжелых металлов, которые нежелательны при анализе. В разбавленном растворе серной кислоты на ртутном катоде осаждаются железо, хром, никель, кобальт, цинк, кадмий, галлий, индий, германий, медь, олово, молибден, рений, висмут, таллий, серебро, золото и металлы платиновой группы (за исключением рутения и осмия) в то же время такие элементы, как алюминий, титан, цирконий, фосфор, ванадий и уран, количественно остаются в растворе Этот метод особенно ценен при определении последней группы элементов в металлургических материалах. Так, электролиз с ртутным катодом обеспечивает превосходное отделение железа, мешающего при определении алюминия в стали. Не всегда легко без остатка выделить осаждаемые элементы. Микрограммовые количества их остаются в растворе даже при условии, что предпринимаются самые тщательные меры. В раствор будут попадать микроколичества ртути, так как она имеет заметную атомную растворимость ( -25 у/л воды при комнатной температуре). По имеющимся данным при концентрациях серной кислоты от 0,1 до 6 н. можно достичь фактически полного электролитического осаждения Си, 2п, Сс1, 1п, Т1, 8п, В1, Ре и, весьма вероятно, также Ag, Аи, Hg и некоторых металлов платиновой группы. При кислотности в пределах 0,1—1,5 н. удается полностью выделить Со и N1. Другие металлы (Оа, Аз, 5е и Сг) можно осадить только из 0,1 н. серной кислоты. Из серной кислоты в пределах концентраций от 0,1—6 н. неполно осаждаются Ое, 8Ь, Те, Мп, Яе и, вероятно. Ни. После проведения [c.43]


    МОЖНО добиться хорошего отделения скандия от редкоземельных элементов, тория, циркония (при низкой кислотности), также как и от марганца, магния и кальция. Дополнительные эксперименты показали, что этим путем можно также добиться хорошего отделения скандия от иттриевых земель и тория (в 0,5 н. соляной кислоте или при pH 4—5). Отделение скандия от циркония (и гафния) происходит не так хорошо, как можно было ожидать. При pH 4—5 цирконий экстрагируется меньше, чем из 0,5 н. соляной кислоты, однако при экстракции из почти нейтральных растворов в водной фазе остается больше скандия. Экстрагируя скандий при pH 3—4 можно добиться хорошего отделения его от титана. Вместе со скандием в значительной степени экстрагируются бериллий, алюминий, возможно галлий, индий, железо(П1) , кобальт и, по-видимому, некоторые другие металлы, например такие, как молибден и рений. [c.716]

    Подобным же путем можно отделить железо и хром от урана, бериллия, циркония и тория молибден от ванадия кадмий от магния медь от алюминия и т. д. При электролизе нейтральных растворов их солей на ртутном катоде могут быть выделены щелочные и щелочноземельные металлы. При этом образуются амальгамы, которые легко разлагаются водой с образованием гидроокисей этих металлов. Выделение этих наиболее электроотрицательных металлов было бы невозможно, если бы перенапряжение выделения водорода на ртути не было бы столь велико. Легкость, с которой эти металлы образуют амальгаму, используется при электроаналитических определениях для отделения их от других катионов. [c.280]

    Для отделения от молибдена умеренных количеств многих элементов целесообразно пользоваться осаждением аммиаком с переосаждением осадка, если он велик, и последующей обработкой фильтрата сульфидом аммония. Осаждение аммиаком, при наличии в растворе достаточного количества железа (П1), позволяет отделять от молибдена железо, фосфор, мышьяк, сурьму и, возможно, другие элементы, например висмут, олово, германий и редкоземельные металлы Свинец при этом должен отсутствовать, иначе выделяется молибдат- свинца. Обработкой фильтрата сульфидом аммония полностью удаляют кадмий, серебро и большую часть, а возможно, и всю медь. В тех случаях, когда не требуется определять железо и щелочноземельные металлы, осаждение аммиаком целесообразно проводить, как описано на стр. 363. Необходимо указать, что при медленном введении аммиака в слабокислый раствор некоторое количество молибдена захватывается осадком поэтому рекомендуется прозрачный анализируемый раствор вливать нри сильном перемешивании в избыточное количество аммиака. В некоторых случаях, как, нанример, для лучшего отделения меди, аммиак можно заменить едким натром и сульфидом натрия. Сплавление породы или окисленных минералов с карбонатом натрия и последующее извлечение молибдена в раствор обработкой плава водой также может служить для отделения умеренных количеств молибдена от целого ряда элементов. Следует иметь в виду, что все эти методы отделения молибдена от других элементов не равноценны и заменить друг друга не могут. Так, при осаждении аммиаком мышьяк совместно с другими элементами выделяется в осадок, тогда как при применении едкого натра или при выщелачивании карбонатного плава водой он практически полностью переходит с молибденом в раствор. Медь же, наоборот, переходит вместе с молибденом в аммиачный фильтрат, а при обработке раствора [c.359]

    Осаждение в виде сульфидов. Осаждение сероводородом из кислы растворов может служить для отделения платиновых металлов и золота от большинства других эл( ментов, исключая серебро, медь, кадмий, ртуть, индий, германий, олово, свинец, мышьяк, сурьму, висмут, молибден, селен, теллур и рений.  [c.412]

    Благодаря большому сродству к кислороду ниобий и тантал одновременно можно отделить от большинства других элементов осаждением из растворов минеральных кислот при помощи хелатообразующих реагентов, которые в качестве донорных атомов содержат только атомы кислорода. Одиако вместе с ниобием и танталом осаждаются в зависимости от типа хелатообразующего реагента титан и цирконий, поведение которых очень близко к поведению ниобия и тантала, или кислотообразующие металлы, такие, как хром, молибден и вольфрам. Отделение от этих пяти элементов представляет собой большую проблему при анализе материалов, содержащих ниобий и тантал. [c.186]

    В другом полезном варианте группового отделения по принципу все или ничего применяют элюент, содержащий 0,1 М винную кислоту и 0,01 М азотную кислоту [9]. В такой кислой среде сурьма (V), молибден (VI), тантал (V), олово (IV) и вольфрам (VI) образуют комплексы с винной кислотой, а свинец (II) и многие другие катионы металлов не включаются в комплексы и удерживаются катионообменником. Образцы, содержащие олово (IV), необходимо вводить в колонку в виннокислом растворе. [c.25]

    В ЭТОМ случае используют амфотерную природу некоторых металлов, таких, как цинк, алюминий, молибден, вольфрам и сурьма эти металлы, извлеченные из раствора катиоиообменной смолой, могут быть затем вытеснены из нее промывкой щелочью. Другие металлы, которые образуют нерастворимые гидроокиси, конечно, остаются на смоле. Некоторые исследователи, применившие этот метод, заявляют, что добились очень хорошего отделения молибдена и вольфрама от железа и алюминия от железа. Однако к этим сообщениям нужно относиться осторожно, так как другие исследователи получали неудовлетворительные разделения. Сейчас, конечно, слишком рано приходить к определенным выводам, но если сам принцип правилен, то, несомненно, кажущиеся расхождения в результатах найдут себе объяснение. [c.74]


    Отделение металлов, образующих кислородные анионы, от других металлов выполняется весьма просто. Для этой цели могут применяться как катиониты, так и аниониты — например в С1-форме. Здесь используется тот же принцип, что и при отделении мешающих ионов противоположного знака. Примером применения анионообменных методов может служить отделение хромат-ионов от алюминия [30], железа [ИЗ], кобальта [39] и титана [98]. Аналогичные методы применяли Т. А. Белявская и Е. П. Шкробот [14] для отделения хрома (VI) от хрома (III) (см. также [119]), а Ю. В. Морачевский и М. Н. Гордеева [78] — для отделения молибдена от кальция, алюминия и железа. Известен метод определения ванадия, хрома и молибдена в сталях [36], основанный на том, что железо не поглощается анионитами из ацетатного буферного раствора (pH 2,5—3,0), к которому, во избежание осаждения железа, добавлен маннитол. Ванадий элюируют 0,6М NaOH, хром — ЪМ НС1 и, наконец, молибден — iM H l. [c.353]

    Диметилдиоксим первым из диоксимов применялся для экстракционного отделения никеля [П06, 1201]. от диоксим часто используется в аналитической практике для отделения и концентрирования малых количеств никеля при анализе металлов, сплавов и солей алюминия и алюмосиликатов [931], железа [1004, 10491, кобальта и его солей 11002], урана и его сплавов [334, 12061, чистого электролитического хрома [324], сплавов на основе циркония 11061], кадмия [206] и многих других металлов и сплавов [563, 842]. Экстракция диметилдиоксимата никеля применяется также при анализе перхлоратных растворов легированных сталей [8461, содержа-Ш.ИХ хром, молибден, ванадий, никель, растворов электролитических ванн [678а1, цинковых электролитов для получения цинка [8641 и дpyfиx объектов [16, 5591. Описаны методы экстракционного выделения никеля при помощи диметилдиоксима из руд [429, 8151, медных солей [10011, галогенидов щелочных металлов [45] и из различных биологических материалов [404, 6771. [c.58]

    В растворе комплексона III можно полярографическим методом определять молибден в вольфраме, а также в рудах без отделения от Си, РЬ и Fe [37]. Применение комплексона III позволило получить четкие волны четырехвалентного германия на фоне NH4OH, NH4 I с Ei/ — —1,3 в. В этих условиях германий может быть определен в присутствии ряда других металлов [38 [. [c.370]

    Хороший метод выделения незначительных количеств ванадая в определенных случаях основан на том, что из слабокислого раствора (рн около 4—5) извлекают хлороформом соединение ванадия с о-оксихинолином V2 b( 9H5N)4 хром (VI) не извлекается После выпаривания хлороформа остаток можно сплавить с карбонатом натрия и перевести таким образом ванадий в ванадат. Железо (III) и молибден (VI) также извлекаются, и поэтому метод не применим к материалам, содержащим железо. Алюминий, силикат, фосфат, фторид и т. п. не препятствуют извлечению ванадия. Вольфрам, дающий с о-оксихинолином осадок (нерастворимый в хлороформе), должен отсутствовать допустимо его присутствие лишь в очень малых количествах. Об отношении других металлов к о-оксихинолину см. на стр. 117. Некоторые результаты анализа силикатов, приведенные на стр. 166, свидетельствуют об удовлетворительном отделении ванадия от 100—200-кратного количества хрома. [c.161]

    В настоящее время широко применяются хроматографические методы отделения молибдена от меди, железа и других металлов [29]. Молиб-ден удается отделять не только от железа и меди, но и от анионов С1" и т. п., используя сульфорезорциновую смолу [30]. Железо и молибден в солянокислом растворе находятся в виде аниона РеС1 и катиона MoO При применении сульфоугля в Н-форме на колонке удерживается молибден, а в фильтрат переходит железо. Молибден затем вымывают из колонки с катионитом раствором щелочи. Для разделения молибдена и железа также используют образование устойчивого фосфатного комплекса железа [Ре (Р04)2] " [31]. [c.538]

    Для отделения висмута от сурьмы, олова, мьппьяка, молибдена, селепа п теллура сульфиды этих металлов обрабатывают несколько раз теплым раствором сульфида аммония. При этом сурьма, четырехвалентное олово, мышьяк, молибден и другие элементы переходят в раствор в виде сульфосолеп, а висмут остается в осадке. В присутствии сульфида двухвалентного олова обработку ведут 1Юлисульфидом аммония (сульфид двухвалентного олова нерастворим в (NH )2S [566 (стр. 509),1108 (стр. 267, 246, 283, 310, 330, 337)]. Вместо сульфида аммония можно взять сульфид натрия или калия. [c.70]

    Хннализариновый метод. Галлий можно определить колориметрическим методом, основанным на его реакции с хинализарином в результате которой образуе тся лак, окрашенный в розовый до аметистового цвет. Эта реакция весьма чувствительна (можно открыть 0,02 мг1л галлия), но крайне н специфична, и при ее применении требуется предварительное отделение от галлия многих посторонних металлов. Наилучшие результаты получаются при pH раствора, равном 5, и содержании в растворе ацетата аммония (1 н.) и хлорида аммония (0,5 н.). В этих условиях влияние алюминия, бериллия, титана, циркония, тория, редкоземельных металлов олова (IV), таллия (III) и других элементов можно устранить введением фторида который, однако, нё препятствует реакции хинализарина с железом (III), оловом (II), сурьмой (III), медью, свинцом, индием, германием, ванадием (IV) и (V) и молибденом (VI). При pH = 5 магний, марганец, железо (II), ртуть (II), таллий (III), Кадмий, вольфрам, уран (VI) [c.556]

    Отделение некоторых элементов от циркония осаждением сульфидов. Металлы сероводородной группы могут быть отделены осаждением сероводородом. (Отделение элементов, которые только в слабокислой среде количественно осаждаются сероводородом (свинец, молибден, кадмий), проводят в присутствии винной кислоты. Метод применяют для отделения железа от, циркония. Из аммиачного винно- или лимоннокислого раствора железо осаждается в виде FeSg, а цирконий при этом остается в растворе. Из фильтрата цирконий может быть осажден купфероном или таннином. Кроме железа в виде сульфидов осаждаются Со , Ni , Zn , Mn , Fe и in +. Вместе с цирконием в растворе остаются Ti(IV), U(VI), рзэ, Ве , Mg , Ga , Nb(V) и другие элементы. Если орадок сульфидов большой, то его растворяют в кислоте, а затем осаждение повторяют. В объединенных фильтратах содержится весь цирконий. Нагревание ускоряет коагуляцию осадка. Однако большие количества железа (более 0Q мг) отделить трудно, так как осадок плохо промывается. В таких случаях железо следует отделять на ртутном катоде. [c.81]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]

    Большинство металлов не поглощается анионитами из сульфатных растворов. Широко известное исключение из этого правила составляют уран и торий. Некоторые другие элементы, принадлежащие к побочным подгруппам групп IV—VI, также поглощаются анионитами. Подробно изучалось поглощение циркония из сульфатных растворов [60]. Отделение циркония от непоглощаемых элементов, в частности, от щелочноземельных, редкоземельных и переходных металлов, хорошо протекает в 0,1н. H2SO4. Кроме циркония, в этой среде анионитами поглощаются ванадий (V), молибден (VI), вольфрам (VI), а также уран (VI) и олово (II). [c.357]

    Анализ металла высокой чистоты химико-спектральным методом описан в работах [128, 131, 352]. Обогащение достигается прелварительнььм отделением молибдена а-бензоиноксимом или эфирной экстракцией [128, 131], а также осаждением примесей сероводородом [352] и другими приемами [293]. Многие методики определения примесей в молибдене могут быть использованы для анализа сплавов на его основе. [c.143]

    Химическую переработку богатых высококачественных концентратов после их обжига производят с целью получения чистых соединений молибдена — парамолибдата аммония и молибденового ангидрида. Из этих последних в случае необходимости легко получить любые другие соединения, в том числе и соединения особо высокой чистоты. Молибденовый ангидрид, находящийся в огарке, взаимодействует с растворами аммиака, щелочей, соды, некоторых кислот, образуя растворимые соединения. Щелочные металлы — нежелательные примеси для соединений молибдена, применяемых в электротехнической и химической промышленности. В растворе аммиака нерастворимо большинство примесей, сопутствующих молибдену в огарке. В то же время в щелочах, соде и кислотах растворяется больше примесей. Поэтому аммиачный способ переработки богатых молибденовых огарков более распространен. Его преимуществами, помимо высокого извлечения М0О3 в раствор и достаточно полного отделения примесей, являются также простота дальнейшей очистки аммиачного раствора, легкость выделения молибдена в виде чистого парамолибдата аммония, простота подбора материала для аппаратуры. Схема аммиачного метода переработки огарков после обжига молибденита представлена на рис. 144. [c.555]

    И ИНДИЙ. Среди других почти совсем не экстрагируются щелочноземельные металлы, бериллий, магний, титан, марганец, кобальт, никель, цинк, молибден и свинец. Иттрий и церий(П1,1У) экстрагируются слабо, лантан и неодим вряд ли вообще экстрагируются. Без сомнения, можно добиться хорошего отделения тория от иттрия и от всех редкоземельных элементов, применив метод фракционной экстракции. Простейшее решение этой задачи, по-видимому, заключается в применении экстракционного метода с промывками (ср. стр. 63), в котором органическую фазу последовательно встряхивают с порциями раствора нитрата алюминия. В действительности этот метод уже был использован более точное знание величин коэффициентов распределения редкоземельных элементов позволило бы легко выбрать оптимальные условия четкого отделения тория как от этих, так и от других плохо экстрагирующихся элементов. Наибольшее затруднение при экстракционном выделении тория посредством окиси мезитила связано с отделением циркония,, который плохо отделяется этим методом и обычно мешает определению тория колориметрическими методами. Поэтому перед экстракцией цирконий следует удалять осадительными методами. Обычно для этой цели лучше применять фторидное осаждение тория, но, как указывалось ранее, цирконий может загрязнять осадок. Ход анализа тория с выделением его окисью мезитила приведен на стр. 758. [c.756]

    Значительно более эффективными и экономически выгодными могут оказаться методы переработки ядерного горючего, не связанные с применением водных растворов. Первоначальный этап растворения в этом случае опускают, чем в большой степени облегчается превращение нужного материала в металл или окись на последнем этапе. Разработке таких методов было посвящено значительное число исследований. Предложен, например, метод отделения урана и плутония от продуктов деления в виде летучих гексафторидов UFe и PuFe, а также большое число пирометаллурги-ческих методов, один из которых, состоящий в очистке расплава, использовали для переработки ядерного горючего реактора EBR-II. В этом случае урановые тепловыделяющие элементы расплавляют в тиглях из окиси циркония при температуре 1300° в инертной атмосфере. Многие продукты деления, например инертные газы, щелочные и щелочноземельные металлы и кадмий, отгоняются другие образуют окислы и отделяются со слоем шлака. Однако отдельные продукты деления, например благородные металлы и молибден, остаются в расплаве с ураном . Из этого сплава при дистанционном управлении изготавливают (с добавлением свежей порции топлива взамен выгоревшей в реакторе) новые тепловыделяющие элементы, которые возвращаются в реактор. Относительная простота этого метода и его преимущества очевидны. [c.487]


Смотреть страницы где упоминается термин Отделение молибдена от других металлов: [c.678]    [c.96]    [c.24]    [c.328]   
Смотреть главы в:

Химико-технические методы исследования -> Отделение молибдена от других металлов




ПОИСК





Смотрите так же термины и статьи:

Другие металлы



© 2025 chem21.info Реклама на сайте